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Robustness to Impulsive Noise of Algorithms based on Cross-Information
Potential and Delta Functions
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ABSTRACT

In this paper, the optimum weight of the algorithm based on the cross information-potential with the delta functions (CIPD) is derived
and ifs robustness against impulsive noise is sfudied. From the analysis of the behavior of opfimum weight, it is revealed that the
magnitude controlling operation for input plays the main role of keeping optimum weight of CIPD stable from the impulsive noise. The
simulation results show that the steady state weight of CIPD is equivalent to that of MSE criterion. Also in the simulation environment
of impulsive noise, unlike the LMS algorithm based on MSE, the steady state weight of CIPD is shown to be kept stable.

= keyword : Cross-information potential, delta function, CIPD, impulsive noise, robustness

1. INTRODUCTION One of the problems of the CIPD algorithm was that its
computational complexity was heavy caused by gradient
estimation. This computational burden has been dealt with in

Wireless communication systems are often affected by
the work [5] and significantly reduced by estimating the

impulsive noise from a variety of sources [1][2]. In the
gradient based on a recursive approach so that the CIPD

algorithm has been better suited to practical situations.
However, analytic research on its optimum solutions and

environment with impulsive noise that causes large
instantaneous errors and system instability, algorithms based
on the criterion of mean squared error (MSE) may fail to
compensate for intersymbol interference (ISI) [3]. their behavior has not been carried out yet.
As a cost function based on information theoretic learning, d, i
cross information potential with delta functions (CIPD) has been —»{ Channel I
developed into a blind algorithm that yields superior ISI -2k ﬁmse

cancelation performance under impulsive noise environment[4].
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In this paper, the optimum weight of the CIPD algorithm
is derived and analyzed in the aspect of the robustness
against impulsive noise. And through simulation under
impulsive noise, the stability of the steady state weight of
the CIPD algorithm is compared with MSE-based least mean
squared (LMS) algorithm [6].

2. MSE CRITERION AND RELATED
ALGORITHMS

A symbol d at time k is transmitted through the channel
H (2) distorted by multipath and additive noiseMas shown

in Fig. 1 [6]. The equalizer input %« becomes
X = z hd, +n (€))

With the input Xk =[Xc: Xcgrmen %l and weight
W =[Woy Wy W ] of a tapped delay line (TDL)

filter structure, the equalizer output Y« and the error &
become

Yi = Wi X, o)
& =d — Y, =d —W/X, 3)

Taking statistical average E[l to the error power ‘9«2,
the MSE criterion E[&Tis defined and the optimum weight
Wy for MSE criterion is

o _ E[dX,]

E T EXXT] @

With this optimum weightWue, E[6XJin the

optimum state becomes

EleX] = E[d X, ]- Wy -E[X,X(]1=0 (5

The statistical average Ellis commonly replaced with
sample average or time average operation in practice. The
LMS algorithm based on the sample average version of
MSE criterion is to use one error power & instead of E[€]

o€

A
for practical reasons [6]. The gradient zw for minimization

of € becomes

©
Using the steepest descent method leads to the LMS
algorithm as
a 2
W, =W, - = W, +20-6X, -

2

&
By letting the gradient aw be zero, we have the optimum
weight of LMS algorithm W s as

dkxk
X XTI ®)

opt _
Wins =

t . . . o
We see that Wilis may fluctuate since noise exists within

opt

the input Xk, but the statistically averaged E[Wius

becomes equal to Wy in Gaussian noise environments.
Non-Gaussian noise such as impulsive noise, however, may
defeat the averaging operation since even an impulse can
dominate the averaging operation. Therefore we may
speculate that W s can become unstable under impulsive
noise environment.

In the following section, we will discuss the optimum
weight behavior of CIPD algorithm known for its robustness
against impulsive noise.

3. CIPD ALGORITHM AND OPTIMUM
WEIGHT

With Nsamples (sample size is N) of output
Wi YicarYiwaa the probability density

Fig. 2. Symbol space A and error samples for
M =4,
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function of output fy(Y) can be constructed as in (9)
based on Kernel density estimation [7].

W)=y 26,(-1)

i=k—-N+

1 & 1 -(y-y)?
== ex
NI:%‘JO_@ p[ 20—2 ]

©

The desired symbols A A AL in the symbol space
A of CIPD algorithm are assumed to be iid and the

transmitted symbol dyis one element of the symbol space A.

Therefore
1
fa(@ = “o@-A) ..+ 5@-A,)] 10

Then the cross information-potential (CIP) with the delta
functions CIPD,y can be expressed using the kernel density

estimation method as [3].

S 3G, (A - y)

CIPD,, =
. et (11)

Zl~

1
M

The gradient of (11) for the maximization of CIPD,y

becomes

CIPD,, 2 ¥ ¥
—w —MNazi:kZNj+l.;1(A“ ¥)

G (A - Y- X (12)
1 [3

. =30

If we consider the sample-averaged operation N ,_&.;

in (12) is treated as the same as the statistical average E[]
for practical purposes, we can rewrite (12) as

o MCT

w x].k

< " erMCT

Ll é - xm,k
3 -

o Mot

» Qb—"x.u.k

Fig. 3. Magnitude controller for input

oCIPD,, 2 Mo
W‘ MNo2 E[;(An Yk)
G, (A=Y X] (13)

At the optimum state, the gradient becomes zero.
M
E[Z(An - yk) 'Gg(An - YK) : Xk] =0
e (14

Since the term (Aw— Yi) implies how far the current
output Yis from each symbol An, we may define the
difference (An—Yi)as an symbol error Enk for each symbol
An. N symbol errors are generated from the symbol space

at each iteration time as in Fig. 2 for a simple case of
M=4.

Then, (14) can be written as

M
=] -G, (e, )X, ]=0
;em,k €ni) X 5

Comparing the optimum condition of LMS algorithm

El6X,J=0 in (5) to (15) , we may regard Co(8ni) Xk as
a kind of modified input. And we see that the term

G, (&) Xin (15) implies that Xiis magnitude-controlled
by G, (an)according to error values. For example, when

symbol error Smkhas a very large value induced from some

strong noise like impulses, the Gaussian function output
G, (&) becomes very small (its exponential is a decay
function of error power), so that the value of input X«is cut
down by the multiplication of G, (&) . With the definition
of Xm,ckl as a magnitude controlled input (MCI) in (16), this

process is described in Fig. 3.
MCl
Xk =G, (€n) X (16)

With Xink and (12), the CIPD algorithm can be rewritten
as
k M

2u Mcl
Wi, =W, +—2— > Y. X
AR VINE o 17

k-N+1, m=1

el

b= QIE{Hl HESE| (172423)
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Compared with the LMS algorithm in (7), the two
algorithms are very similar in the aspect of error and input
terms. On the other hand, it can be noticed that the MCI

Xk can keep the algorithm stable even at large error

occurrences such as when the input is contaminated by
impulse noise, while the LMS has no such protection
measures. Another different aspect is the summation process

oversymbolpomtsandemX . But this process does not
seem to contribute much to deterring the influence of large errors
since even an impulse can dominate the averaging operation.

) . OCIPD o )
Now, the optimum condition™ sw with
Yi = Xk W™ becomes
i i T t MCI
(An _Xi W )'Xmi
i=k—N+1, m=1 '
Z zAﬂxMCI i iXTWDmXMq
i=k—N+1, m=1 i=k—=N+1, m=1 '
=0 (18)
That is
£ & MCI & 2 T pt MCI
) z ZAnXm,i :_ z zxiw xm,i
i=k—-N+1, m=1 i=k—-N+1, m=1 (19)

This relationship yields the optimum weight of CIPD
algorithm as

k

Z Z AnXMCI

Wopt — i=k— N+1 nﬁl

Z ZX Xmi 20)

i=k-N+1, m=1

Since we can assume that most error samples are
concentrated in the steady state at around zero, the kernel

G, (&) can be treated as a constant %\/5 . That is,

. 1
limG =—
And

||mxm‘;' =X,

22

Therefore the expectation of the optimum weight
E[W™] for (20) can be rewritten as

Z Z E[AﬂXMG

E[Wopt] i=k— N+1 m:l

z ZE[X XMCI

i=k—N+1, m=1

> SEA, X]

__ i=k=N+1, m=1

> D EXT-X] @3)

i=k—N+1, m=1

Since the transmitted symbol diis an element of the

symbol space A, E[W™] becomes

E[Wopt] — E[dl-(r Xk]

E[X - Xl 24
This indicates
E[W™] = E[Wis] = W& 25)

When the input becomes contaminated with impulsive

noise even in the steady state, Xycan have an excessive
value, this in turn makes the steady state (optimum) weight

W in (8) wildly fluctuate. However, thanks to the

magnitude-controlling Gcr(emk)cutting outliers, the MCI

xmil in both the nominator and denominator of (22) can be

in an acceptable range, so that we can be sure that W
remains stable in the steady state without getting shaky
under such an impulsive noise situation. Assuming that most
error samples are located at around zero in the steady state,
we see that the behavior of steady state weight can be
regarded as that of optimum weight. So in the following

section, on behalf of Wiiisand W™ , their weight traces will
be investigated through simulation in order to verify the

property EIW™1=E[Wsslin (25) and the stability of

W in impulsive noise environments.

4. SIMULATION RESULTS

As one of 4 symbol points {dl=—3dz=—ldz=1d4=3},
dy is sent at time k from the transmitter (M =4) through
H(2) =0.304+0.903z * +0.304Z [8]. For the observation
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of the trace of the steady state weight, the impulse noise is
applied in the steady state (after convergence, 8000) to the
channel output while the additive white Gaussian noise

(AWGN) Mcwith its variance of 0.001 is added to it
throughout the whole time as depicted in Fig. 4. The
variance of the impulse is 50 and its incident rate is 0.01
based on the generation of impulsive noise described in [9].
The number of tap weights of the TDL equalizer is L=11.
The sample size N, the kernel size o and convergence
parameter # for CIPD algorithm are 20, 0.5 and 0.007,
respectively. The convergence parameter for LMS is 0.001.
These parameter values are chosen to have the lowest steady
state MSE for this simulation.
Figure 5 shows the MSE learning curves comparing
the two algorithms of LMS and CIPD. At around 6000
samples, both algorithms converge completely and then they
undergo the impulsive noise described in Fig. 4. The error
power of LMS when hit by impulses shows sharp spikes
and then stays in very high MSE up to 10 dB or decreases
very slowly from that MSE value. On the other hand, the
curve of CIPD shows no staying in high MSE state after the
sharp spikes induced from the impulse noise. This indicates
that CIPD has no turbulence or instability of steady state
weight. For more detailed inspection, the results of weight
trace are compared in Fig. 6. For the trace observation, only

Wk, Wik andWex are shown in Fig. 6 considering
page-limits. The thick gray line is the trace of the LMS
algorithm and the thin black line is the one of CIPD.

30 4
254
20 4
154

10

Volt

T T T T T
0 2000 4000 6000 8000 10000
Number of samples

Fig. 4. The impulse noise and background AWGN.

10 log of MSE

4000 600 8000 10000

Iterations (number of samples)

Fig. 5. MSE learning curves.

Assuming the steady state weight to be in the optimum
state, it is reasonable for us to investigate if the steady state
weight keeps the optimum value under impulsive noise. In
Fig. 6, it is observed firstly that LMS and CIPD both have
the same steady state weight values as described in (25). As
the second point we found, the each weight trace of CIPD
in the steady state shows no fluctuations at all remaining
undisturbed under the strong impulses. This is obviously in
contrast to the case of LMS algorithm where traces of all

Wak, Wak andWex have sharp perturbations at each impulse
occurrence and remain perturbed although gradually dying.

2.0

== wW3-LMS
—O— w3-CIPD
=l W4-LMS
—v— w4-CIPD
= ==WwW5-LMS
—t+— w5-CIPD
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Fig. 6. The behavior of weight values of Wax, Wak

andWsx with impulsive noise being added in the
steady state.

By comparing the weight update equations (7) and (17),
as main differences between them, CIPD is found to have
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sample average operations and MCI. As for the average or
summation operation, we can notice that the dominant role
of robustness against impulsive noise is not the average
operation but the MCI since impulsive noise can defeat the
average operation as explained in Section 2.

For a clearer quantitative comparison of the robustness

MCI
against impulsive noise between X« and Xmk , their traces
are shown under the impulsive noise given in Fig. 4 are

depicted in Fig. 7. Considering page-limits, MCI inputs

MCl

Xox and Xk are compared to the original input . As it

can be expected, the input element *<of Xishows strong
spikes up to 27 volts at the exact time instants affected
directly from the impulsive noise given in Fig. 4. The
magnitude controlled inputs, however, are staying unaffected
by the impulsive noise. This result explains that the MCI

Xk magnitude-controlled by G, (&) cutting outliers keeps

both the nominator and denominator of (22) being in an
acceptable range, so that

304

Input

25 MCI (m=0)
——MCI (m=1)

Volt

T T T 1
6000 7000 8000 9000 10000
Number of samples

Fig. 7. The trace of the original input % (black line)

and MCI (Xxfl, gray line and )QAkC', dark gray line)
under the impulsive noise given in Fig. 4

W*remains stable under such impulsive noise
situations.

5. CONCLUSION

The CIPD algorithm is known to outperform MSE-based
algorithms in most blind signal processing applications in

impulsive noise environment. But the optimum solutions and
properties of the CIPD in regard to the robustness against
impulsive noise have not been studied sufficiently. Through
the derivation of the optimum weight of the CIPD algorithm
and the analysis of the behavior of its optimum weight
under impulsive noise, it can be concluded that the optimum
weight of CIPD is equivalent to that of MSE criterion and
the optimum weight optimum weight of CIPD is kept stable
from impulsive noise. The MCI in CIPD is expected to be
studied in more detail for further enhancement of
performance in future research.
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