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상호 정보 에너지와 델타함수를 이용한 알고리즘의 충격성 잡음에 
대한 강인성

Robustness to Impulsive Noise of Algorithms based on Cross-Information 
Potential and Delta Functions 

김 남 용1*1

Namyong Kim

요   약

이 논문에서는 델타함수와 상호 정보 에너지(cross information-potential with the delta functions, CIPD)에 기반한 블라인드 등화 알

고리즘의 최적 가중치를 유도하고 충격성 잡음에 대해 가지는 강인성에 대해 분석하였다. CIPD 알고리즘의 입력에 대한 크기조절 

기능이 정상상태 가중치를 충격성 잡음으로부터 안정되게 유지하는 주된 역할을 하는 것으로 분석되었으며 시뮬레이션 결과를 통하
여, CIPD 알고리즘의 정상상태 가중치는 MSE 성능기준의 최적해를 가지면서도, 충격성 잡음에서 MSE에 기반한 LMS 알고리즘과 달리, 

안정된 값을 유지함을 보였다. 

☞ 주제어 : 상호정보에너지, 델타함수, CIPD, 충격성 잡음, 강인성

ABSTRACT

In this paper, the optimum weight of the algorithm based on the cross information-potential with the delta functions (CIPD) is derived 

and its robustness against impulsive noise is studied. From the analysis of the behavior of optimum weight, it is revealed that the 

magnitude controlling operation for input plays the main role of keeping optimum weight of CIPD stable from the impulsive noise. The 

simulation results show that the steady state weight of CIPD is equivalent to that of MSE criterion. Also in the simulation environment 

of impulsive noise, unlike the LMS algorithm based on MSE, the steady state weight of CIPD is shown to be kept stable.   

☞ keyword : Cross-information potential, delta function, CIPD, impulsive noise, robustness

1. INTRODUCTION

Wireless communication systems are often affected by 

impulsive noise from a variety of sources [1][2]. In the 

environment with impulsive noise that causes large 

instantaneous errors and system instability, algorithms based 

on the criterion of mean squared error (MSE) may fail to 

compensate for intersymbol interference (ISI) [3]. 

As a cost function based on information theoretic learning, 

cross information potential with delta functions (CIPD) has been 

developed into a blind algorithm that yields superior ISI 

cancelation performance under impulsive noise environment[4].
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One of the problems of the CIPD algorithm was that its 

computational complexity was heavy caused by gradient 

estimation. This computational burden has been dealt with in 

the work [5] and significantly reduced by estimating the 

gradient based on a recursive approach so that the CIPD 

algorithm has been better suited to practical situations. 

However, analytic research on its optimum solutions and 

their behavior has not been carried out yet. 

Fig. 1. Base-band communication system model
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In this paper, the optimum weight of the CIPD algorithm 

is derived and analyzed in the aspect of the robustness 

against impulsive noise. And through simulation under 

impulsive noise, the stability of the steady state weight of 

the CIPD algorithm is compared with MSE-based least mean 

squared (LMS) algorithm [6].  

2. MSE CRITERION AND RELATED 

ALGORITHMS

A symbol kd  at time k is transmitted through the channel 

)(zH distorted by multipath and additive noise kn as shown 

in Fig. 1 [6]. The equalizer input kx becomes 

kikik ndhx   (1)

With the input ,...,,[ 1 kkk xxX  
T

Lkx ]1  and weight 

,,[ ,1,0 kkk wwW  
T

kLw ].., ,1  of a tapped delay line (TDL) 

filter structure, the equalizer output ky  and the error  ke  

become

k
T
kky XW (2)

k
T
kkkkk dyde XW (3)

Taking statistical average ][E  to the error power 
2

ke , 

the MSE criterion ][ 2
keE is defined and the optimum weight 

opt
MSEW for MSE criterion is  

][
][

T
kk

kkopt
MSE E

dE

XX
XW 

(4)

With this optimum weight
opt
MSEW , ][ kkeE X in the 

optimum state becomes 

0][][][  T
kk

opt
MSEkkkk EdEeE XXWXX     (5)

The statistical average ][E is commonly replaced with 

sample average or time average operation in practice. The 

LMS algorithm based on the sample average version of 

MSE criterion is to use one error power 
2
ke  instead of ][ 2

keE  

for practical reasons [6]. The gradient W
 2

ke
for minimization 

of 
2
ke becomes  

kk
kk

k
k e

yd
e

e X
WW

2)(2
2









(6)

Using the steepest descent method leads to the LMS 

algorithm as   

kkk
k

kk e
e XW
W

WW 


  2

2

1 (7)

By letting the gradient W
 2

ke
be zero, we have the optimum 

weight of LMS algorithm 
opt
LMSW as 

T
kk

kkopt
LMS

d

XX
XW 

(8)

We see that 
opt
LMSW may fluctuate since noise exists within 

the input kX , but the statistically averaged ][ opt
LMSE W  

becomes equal to 
opt
MSEW in Gaussian noise environments. 

Non-Gaussian noise such as impulsive noise, however, may 

defeat the averaging operation since even an impulse can 

dominate the averaging operation. Therefore we may 

speculate that 
opt
LMSW can become unstable under impulsive 

noise environment.

In the following section, we will discuss the optimum 

weight behavior of CIPD algorithm known for its robustness 

against impulsive noise.

3. CIPD ALGORITHM AND OPTIMUM 

WEIGHT

With N samples (sample size is N ) of output 

 11,...,,  Nkkk yyy the probability density 

Fig. 2. Symbol spaceA  and error samples for 

4M . 
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function of output )(yfY can be constructed as in (9) 

based on Kernel density estimation [7]. 





k

Nki
iY yyG

N
yf )(1)( 







k

Nki

iyy

N 1
2

2

]
2

)(exp[
2

11
 (9)

The desired symbols  MAAA ,...,, 21  in the symbol space

A  of CIPD algorithm are assumed to be i.i.d and the 

transmitted symbol kd is one element of the symbol space A . 

Therefore

)](...)([1)( 1 MA AaAa
M

af  
(10)

Then the cross information-potential (CIP) with the delta 

functions AYCIPD  can be expressed using the kernel density 

estimation method as [5]. 

 
 


M

m

k

Nki
imAY yAG

NM
CIPD

1 1
)(11

 (11)

The gradient of (11) for the maximization of AYCIPD  

becomes   

 
 




 k

Nki

M

m
im

AY yA
MN

CIPD

,1 1
2 )(2

W  

iim yAG X )( (12)

If we consider the sample-averaged operation 



k

NkiN 1
)(1

in (12) is treated as the same as the statistical average ][E  

for practical purposes, we can rewrite (12) as 

Fig. 3. Magnitude controller for input 







 M

m
km

AY yAE
MN

CIPD

1
2 )([2

W

])( kkm yAG X  (13)

At the optimum state, the gradient becomes zero.

0])()([
1




M

m
kkmkm yAGyAE X (14)

Since the term )( km yA  implies how far the current 

output ky is from each symbol mA , we may define the 

difference )( km yA  as an symbol error kme , for each symbol 

mA . N symbol errors are generated from the symbol space 

at each iteration time as in Fig. 2 for a simple case of 

4M . 

Then, (14) can be written as  

0])([
1

,, 


M

m
kkmkm eGeE X

(15)

Comparing the optimum condition of LMS algorithm  

0][ kkeE X  in (5) to (15) , we may regard kkmeG X)( , as 

a kind of modified input. And we see that the term

kkmeG X)( , in (15) implies that kX is magnitude-controlled 

by )( ,kmeG according to error values. For example, when 

symbol error kme , has a very large value induced from some 

strong noise like impulses, the Gaussian function output 

)( ,kmeG becomes very small (its exponential is a decay 

function of error power), so that the value of input kX is cut 

down by the multiplication of )( ,kmeG . With the definition 

of 
MCI

km,X as a magnitude controlled input (MCI) in (16), this 

process is described in Fig. 3. 

kkm
MCI

km eG XX )( ,,  (16)

With 
MCI

km,X and (12), the CIPD algorithm can be rewritten 

as

MCI
im

k

Nki

M

m
imkk e

MN ,
,1 1

,21
2 XWW   

 
 


 (17)
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Compared with the LMS algorithm in (7), the two 

algorithms are very similar in the aspect of error and input 

terms. On the other hand, it can be noticed that the MCI 
MCI

km,X can keep the algorithm stable even at large error 

occurrences such as when the input is contaminated by 

impulse noise, while the LMS has no such protection 

measures. Another different aspect is the summation process 

over symbol points and 
MCI

imime ,, X . But this process does not 

seem to contribute much to deterring the influence of large errors 

since even an impulse can dominate the averaging operation.

Now, the optimum condition 0



W

AYCIPD
 with 

optT
kky WX becomes 

MCI
im

k

Nki

M

m

optT
imA ,

,1 1
)( XWX  

 

MCI
im

k

Nki

M

m

k

Nki

M

m

optT
i

MCI
immA ,

,1 1 ,1 1
, XWXX   

   


 

= 0 (18)

That is 

MCI
im

k

Nki

M

m

k

Nki

M

m

optT
i

MCI
immA ,

,1 1 ,1 1
, XWXX   

   


(19)

This relationship yields the optimum weight of CIPD 

algorithm as 

 

 

 

  k

Nki

M

m

MCI
im

T
i

k

Nki

M

m

MCI
imm

opt

A

,1 1
,

,1 1
,

XX

X
W

(20)

Since we can assume that most error samples are 

concentrated in the steady state at around zero, the kernel 

)( ,kmeG can be treated as a constant  2
1

 .  That is, 

 2
1)(lim , 

 km
k

eG
(21)

And

k
MCI

km
k

XX 
 ,lim

(22)

Therefore the expectation of the optimum weight  

][ optE W  for (20) can be rewritten as 

 

 
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Since the transmitted symbol kd is an element of the 

symbol space A , ][ optE W  becomes

][
][][

k
T
k

kkopt

E

dE
E

XX
XW




(24)

This indicates  

opt
MSE

opt
LMS

opt EE WWW  ][][ (25) 

When the input becomes contaminated with impulsive 

noise even in the steady state, kX can have an excessive 

value, this in turn makes the steady state (optimum) weight 
opt
LMSW in (8) wildly fluctuate. However, thanks to the 

magnitude-controlling )( ,kmeG cutting outliers, the MCI 

MCI
km,X in both the nominator and denominator of (22) can be 

in an acceptable range, so that we can be sure that optW
remains stable in the steady state without getting shaky 

under such an impulsive noise situation. Assuming that most 

error samples are located at around zero in the steady state, 

we see that the behavior of steady state weight can be 

regarded as that of optimum weight. So in the following 

section, on behalf of 
opt
LMSW and optW , their weight traces will 

be investigated through simulation in order to verify the 

property ][][ o
LMS

opt EE WW  in (25) and the stability of

optW  in impulsive noise environments. 

4. SIMULATION RESULTS

As one of 4 symbol points  3,1,1,3 4321  dddd , 

kd  is sent at time k from the transmitter ( 4M ) through 

21 304.0903.0304.0)(   zzzH [8]. For the observation 
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of the trace of the steady state weight, the impulse noise is 

applied in the steady state (after convergence, 8000) to the 

channel output while the additive white Gaussian noise 

(AWGN) kn with its variance of 0.001 is added to it 

throughout the whole time as depicted in Fig. 4. The 

variance of the impulse is 50 and its incident rate is 0.01 

based on the generation of impulsive noise described in [9]. 

The number of tap weights of the TDL equalizer is L=11. 

The sample size N , the kernel size   and convergence 

parameter    for CIPD algorithm are 20, 0.5 and 0.007, 

respectively.  The convergence parameter for LMS is 0.001. 

These parameter values are chosen to have the lowest steady 

state MSE for this simulation. 

  Figure 5 shows the MSE learning curves comparing 

the two algorithms of LMS and CIPD. At around 6000 

samples, both algorithms converge completely and then they 

undergo the impulsive noise described in Fig. 4. The error 

power of LMS when hit by impulses shows sharp spikes 

and then stays in very high MSE up to 10 dB or decreases 

very slowly from that MSE value. On the other hand, the 

curve of CIPD shows no staying in high MSE state after the 

sharp spikes induced from the impulse noise. This indicates 

that CIPD has no turbulence or instability of steady state 

weight. For more detailed inspection, the results of weight 

trace are compared in Fig. 6. For the trace observation, only 

kw ,3 , kw ,4  and kw ,5  are shown in Fig. 6 considering 

page-limits. The thick gray line is the trace of the LMS 

algorithm and the thin black line is the one of CIPD.
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Fig. 4. The impulse noise and background AWGN. 
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Fig. 5. MSE learning curves.   

Assuming the steady state weight to be in the optimum 

state, it is reasonable for us to investigate if the steady state 

weight keeps the optimum value under impulsive noise. In 

Fig. 6, it is observed firstly that LMS and CIPD both have 

the same steady state weight values as described in (25). As 

the second point we found, the each weight trace of CIPD 

in the steady state shows no fluctuations at all remaining 

undisturbed under the strong impulses. This is obviously in 

contrast to the case of LMS algorithm where traces of all

kw ,3 , kw ,4  and kw ,5 have sharp perturbations at each impulse 

occurrence and remain perturbed although gradually dying. 
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 w5-LMS
 w5-CIPD

Fig. 6. The behavior of weight values of kw ,3 , kw ,4  

and kw ,5  with impulsive noise being added in the 

steady state.  

By comparing the weight update equations (7) and (17), 

as main differences between them, CIPD is found to have 
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sample average operations and MCI. As for the average or 

summation operation, we can notice that the dominant role 

of robustness against impulsive noise is not the average 

operation but the MCI since impulsive noise can defeat the 

average operation as explained in Section 2. 

For a clearer quantitative comparison of the robustness 

against impulsive noise between kX  and 
MCI

km,X ,  their traces 

are shown under the impulsive noise given in Fig. 4 are 

depicted in Fig. 7. Considering page-limits, MCI inputs 
MCI

kx ,0 and 
MCI
kx ,1 are compared to the original input kx .  As it 

can be expected, the input element kx of kX shows strong 

spikes up to 27 volts at the exact time instants affected 

directly from the impulsive noise given in Fig.  4. The 

magnitude controlled inputs, however, are staying unaffected 

by the impulsive noise. This result explains that the MCI 
MCI

km,X magnitude-controlled by )( ,kmeG cutting outliers keeps 

both the nominator and denominator of (22) being in an 

acceptable range, so that 

6000 7000 8000 9000 10000
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V
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 Input 
 MCI (m=0)
 MCI (m=1)

Fig. 7. The trace of the original input kx (black line) 

and MCI (
MCI

kx ,0 , gray line and 
MCI
kx ,1 , dark gray line) 

under the impulsive noise given in Fig. 4 

optW remains stable under such impulsive noise 

situations.

5. CONCLUSION

The CIPD algorithm is known to outperform MSE-based 

algorithms in most blind signal processing applications in 

impulsive noise environment. But the optimum solutions and 

properties of the CIPD in regard to the robustness against 

impulsive noise have not been studied sufficiently. Through 

the derivation of the optimum weight of the CIPD algorithm 

and the analysis of the behavior of its optimum weight 

under impulsive noise, it can be concluded that the optimum 

weight of CIPD is equivalent to that of MSE criterion and 

the optimum weight optimum weight of CIPD is kept stable 

from impulsive noise. The MCI in CIPD is expected to be 

studied in more detail for further enhancement of 

performance in future research. 
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