
Journal of Korea Multimedia Society Vol. 19, No. 2, February 2016(pp. 308-315)

http://dx.doi.org/10.9717/kmms.2016.19.2.308

1. INTRODUCTION
1.1 Background
Internet-based social networking sites have

created a revolution in social connectivity. Social

networking sites are Internet-based services that

allow people to communicate and share information

with a group. Facebook, Twitter, Google+, Lin-

kedIn and other social networks have become an

integral part of online lives. Social networks are

a great way to stay connected with others through

the sharing of information such as photos, videos,

and personal messages [1]. In the traditional client-

server authentication model according to D. Hardt

[2], the client requests a protected resource on the

server by authenticating with the server using the

resource owner's credentials. In order to provide

third-party applications access to restricted re-

sources, the resource owner shares its credentials

with the third party.

This has in turn created numerous limitations:

• Third-party applications have a broad access

to the resource owner's protected resources, leav-

ing resource owners without any ability to restrict

duration of access and without the ability to limit

subset of resources.

• Resource owners cannot revoke access to an

individual third party without revoking access to

all third parties.

• Third-party applications are required to store

the resource owner's credentials for future use.

• Compromise of any third-party application

A Secure Social Networking Site based
on OAuth Implementation

Otieno Mark Brian†, Kyung-Hyune Rhee††

ABSTRACT

With the advancement in the area of cloud storage services as well as a tremendous growth of social

networking sites, permission for one web service to act on the behalf of another has become increasingly

vital as social Internet services such as blogs, photo sharing, and social networks. With this increased

cross-site media sharing, there is a upscale of security implications and hence the need to formulate

security protocols and considerations. Recently, OAuth, a new protocol for establishing identity

management standards across services, is provided as an alternative way to share the user names and

passwords, and expose personal information to attacks against on-line data and identities. Moreover,

OwnCloud provides an enterprise file synchronizing and sharing that is hosted on user’s data center,

on user’s servers, using user’s storage. We propose a secure Social Networking Site (SSN) access based

on OAuth implementation by combining two novel concepts of OAuth and OwnCloud. Security analysis

and performance evaluation are given to validate the proposed scheme.

Key words: OAuth, OwnCloud, Social Networking Sites

※ Corresponding Author : Kyung-Hyune Rhee, Address:

(48513) 45, Yongso-ro, Nam-Gu. Busan, Republic of

Korea, TEL : +82-51-629-6247, FAX : +82-51-626-4887,

E-mail : khrhee@pknu.ac.kr

Receipt date : Jan. 22, 2016, Approval date : Feb. 5, 2016

††Dept. of IT Convergence and Application Engineering,

Pukyong National University

(E-mail : mbotieno@gmail.com)
††Dept. of IT Convergence and Application Engineering,

Pukyong National University

※ This work was supported by a Research Grant of

Pukyong National University (2015 year).

309A Secure Social Networking Site based on OAuth Implementation

results in compromise of the end-user's password

and all of the data protected by that password.

• There are great weaknesses that are inherent

in passwords, yet servers are required to support

password authentication.

These issues above need to be addressed, OAuth

2.0 therefore introduces an authorization layer and

separates the roles of the client from that of the

resource owner. The client requests access to re-

sources that are controlled by the resource owner

and hosted by the resource server, and is then is-

sued a varied set of credentials other than those

of the resource owner. The client obtains an access

token which is a string denoting a specific scope,

lifetime, and other access attributes, instead of us-

ing the resource owner's credentials to access pro-

tected resources. Access tokens are issued to

third-party clients by an authorization server with

the approval of the resource owner. The client uses

the access token to access the protected resources

hosted by the resource server [3].

1.2 Overview and Contribution
OAuth 2.0 support is a key requirement which

will make OwnCloud attractive as a platform for

third-party developers who need to integrate Own-

Cloud into their applications. OAuth is a security

protocol that allows third-party applications to re-

quest access to protected information without pro-

viding the username and the password to other

party. Currently, third-party applications have to

use Basic Authentication which involves sending

the username and password to access the Own-

Cloud instance which has the following dis-

advantages:

• Users have to provide their credentials to

third-party applications. If one of the third-party

providers has been compromised then OwnCloud

login will be lost.

• An authentication can only be revoked by

changing the user password which is suboptimal.

• Third-party developers do currently have ac-

cess to the whole OwnCloud instance; they even

could change your password.

Instead of using passwords for authorization,

OAuth is using unique tokens for every client. In

OAuth, the client requests access to the needed re-

sources (scopes) by redirecting the user to a web-

site where he has to approve these permissions.

In this paper, we propose a secure sharing plat-

form between OwnCloud cloud storage and inter-

net based social networking sites. This resolves

the limitation of the current OwnCloud infra-

structure and third-party applications by providing

a security protocol that allows third-party applica-

tions to request access to the protected information

without providing the username and the password

to other party. The proposed protocol entails in-

tegrating third-party SSO login into the OwnCloud

framework, thereby allowing third party internet

social networking sites to have access to all the

media files stored within the cloud storage. In order

to achieve these goals, we propose the integration

of OAuth 2.0 security protocol into the OwnCloud

platform. OAuth 2.0 will ensure security by ensur-

ing the proper authorization flow is followed during

communication between OwnCloud and the social

networking sites. In addition, it performs authenti-

cation of the resource owner/clients through the

Authorization Server. Moreover, it ensures a token

is issued that not only authorizes but also dictates

the scope and lifetime of a given action.

This implementation will be of benefit to differ-

ent users, developers and administrators on differ-

ent levels. Users will be able to grant third-party

applications access to their data without providing

their passwords or granting access to the whole

instance. Users and administrators will be able to

see which applications have access to which data

and manage them. And lastly, developers will be

able to use standard libraries to integrate with

OwnCloud.

310 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 19, NO. 2, FEBRUARY 2015

2. PRELIMINARY AND RELATED WORK
2.1 Preliminary
The OAuth 2.0 authorization framework enables

a third-party application to obtain limited access

to an HTTP service, either on behalf of a resource

owner by orchestrating an approval interaction be-

tween the resource owner and the HTTP service,

or by allowing the third-party application to obtain

access on its own behalf. The OAuth 2.0 author-

ization protocol standardizes delegated author-

ization on the Web. Popular social networks such

as Facebook, Google and Twitter implement their

APIs based on the OAuth protocol to enhance user

experience of social sign-on and social sharing. In

[4], F. Yang et al. describes OAuth (open standard

for authorization) as a protocol that provides a ge-

neric framework to let a resource owner authorize

third-party to access the owner’s resource held at

a server without revealing to the third-party the

owner’s credentials (such as user-name and pass-

word) [2], [5].

The OAuth 2.0 security protocol defines four

roles which helps it accomplish the purpose it is

tasked with reliably [6].

• Resource owner - This refers to an entity

capable of granting access to a protected resource.

When the resource owner is a person, it is referred

to as an end-user.

• Resource server - The server hosting the

protected resources, capable of accepting and re-

sponding to protected resource requests using ac-

cess tokens.

• Client - An application making protected re-

source requests on behalf of the resource owner

and with its authorization.

• Authorization server - The server issuing

access tokens to the client after successfully au-

thenticating the resource owner and obtaining

authorization.

OAuth 2.0 flow describes the interaction be-

tween the four roles and includes the following

steps:

1. The client requests authorization from the re-

source owner. The authorization request can be

made directly to the resource owner, or preferably

indirectly via the authorization server as an

intermediary.

2. The client receives an authorization grant,

which is a credential representing the resource

owner's authorization, expressed using one of four

grant types defined in this specification or using

an extension grant type. The authorization grant

type depends on the method used by the client to

request authorization and the types supported by

the authorization server.

3. The client requests an access token by au-

thenticating with the authorization server and pre-

senting the authorization grant.

4. The authorization server authenticates the

client and validates the authorization grant, and if

valid, issues an access token.

5. The client requests the protected resource

from the resource server and authenticates by pre-

senting the access token.

6. The resource server validates the access to-

ken, and if valid, serves the request.

2.2 Related Work
There has been several implementations and in-

tegrations of secure an extensive sharing to inter-

net social networking sites. These implementations

normally involve the integration of the capability

to login into host sites via a popular social net-

working site account.

Dropbox and OwnCloud are the two most adopt-

ed cloud storage platforms. OwnCloud does not

however support the ability to directly share the

media stored in it to the social networking sites.

The integration involves allowing the capability to

login into OwnCloud via social networking sites

such as Facebook. OwnCloud have not embraced

this feature because of the implications that arise

311A Secure Social Networking Site based on OAuth Implementation

from such integration.

OwnCloud currently uses the Lightweight

Directory Access Protocol (LDAP) and the Web

Distributed Authoring and Versioning (WebDAV).

LDAP is a directory service protocol that runs on

a layer above the TCP/IP stack. It provides a

mechanism used to connect to, search, and modify

Internet directories. The LDAP directory service is

based on a client-server model. Web Distributed

Authoring and Versioning (WebDAV) is an ex-

tension of the Hypertext Transfer Protocol (HTTP)

that allows clients to perform remote Web content

authoring operations. The WebDAV protocol pro-

vides a framework for users to create, change and

move documents on a server, typically a web serv-

er or web share. LDAP on one hand is used for

user authentication while WebDAV on the other

hand is used for file access. [7]

Other identity management protocols have been

used before. SAML(Security Assertion Markup

Language) is a set of standards that have been de-

fined to share information about who a user is,

what his set of attributes are, and give you a way

to grant or deny access to something or even re-

quest authentication. SAML is an XML-based

open standard data format for exchanging au-

thentication and authorization data between par-

ties, in particular, between an identity provider and

a service provider. SAML deals with XML as the

data construct or token format. OAuth’s tokens on

the other hand can be binary or JSON. SAML has

bindings that use HTTP such as HTTP POST

binding, HTTP REDIRECT binding, but it is of

note to point out that there is no restriction on the

transport format. SOAP or JMS or any other

transport can be used to send SAML tokens or

messages. However, OAuth uses HTTP ex-

clusively. Even though SAML was designed to be

applicable openly, it is typically used in Enterprise

SSO scenarios; within an enterprise or enterprise

to partner or enterprise to cloud scenarios. On the

contrary, OAuth has been designed for use with

applications on the internet, primarily for delegated

authorization of internet resources. OAuth is de-

signed for Internet Scale. The problem with this

SAML example is its only one specialized use case

out of many [8].

3. PROPOSED PROTOCOL
3.1 System Model
The proposed framework involves implementing

the OAuth 2.0 security protocol into the OwnCloud

platform. The OAuth 2.0 server authentication flow

is initiated when an OwnCloud account uses the

integration for the first time. The OwnCloud user

must log in to their account and give permission

to the third-party social networking sites applica-

tion so as to be able to access the OwnCloud

account. The server authentication flow consists

these main processes:

• An authorization request is made by the

third-party application

• An authorization code response is issued by

the authorization server

• Using the authorization code, the third-party

application makes an access token request. An ac-

cess token is issued by the authorization server as

a response.

The communication between the user, the third-

party application, the OwnCloud, and the OAuth 2.0

Authorization Server is summarized by four main

roles. In the proposed system model, these roles

are categorized as follows. Firstly, the Resource

Server is represented by OwnCloud application.

The User represents the Owner/User while the

Authorization Server is represented by the OAuth

2.0 protocol. Lastly, the Third-Party Application

represents the Social Networking Sites such as

Facebook and Twitter.

The proposed process communication flow is as

depicted in the Fig. 1. Below;

312 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 19, NO. 2, FEBRUARY 2015

1. The User visits the Third-Party Application

through the Social Media Sites webpage

2. The application directs the user to the OAuth

2.0 authorization server security protocol

3. The User is authenticated with OAuth 2.0 and

then grants the Third-party Application access to

their account.

4. The Authorization Server redirects the User

to the application using the redirect URI. It also

provides an authorization code if the user granted

access to the application. The User is redirected

to the application’s redirection endpoint, the re-

direct_url. This is done with an authorization code

in the code URL parameter.

5. The application then exchanges the author-

ization code for an access token for use in all API

calls for that account. The application uses the

Authentication Code to obtain Access and Refresh

Tokens using a POST request to the token

endpoint. The authorization server validates the

authorization code and, if valid, a JSON response

containing the access token, refresh token, access

token expiration time, and token type is issued.

3.2 Token Assertion
According to the OAuth 2.0 specification, RFC

6749 [2], it very specifically punts on this issue in

section 7: “The methods used by the resource

server to validate the access token (as well as any

error responses) are beyond the scope of this spec-

ification but generally involve an interaction or co-

ordination between the resource server and the au-

thorization server.” This results in a limitation in

the access token validation. In this proposed model,

the resource servers assert the token issued by the

authorization server.

There are two ways to avert these limitations

and these solutions are applied according to the

scenarios present. For small deployments, it can

look it up in a database. In many instances, the RS

and the AS are usually co-located and very tightly

bound so they have access to the same data store.

When the AS part of the server mints a token, it

drops the token or a hash of it into a database along

with all of the information about the token that will

be needed to make an authorization decision. When

that token comes back in later, the RS part of the

server just needs to look up the token value or its

hash and pluck any other bits of data that is needed

from that record in order to authorize or deny the

request being made.

Secondly, in an instance where there are multi-

ple RS's and a single AS, then there is need for

a means to communicate all that meta-information

surrounding the token including what scopes it

has, who authorized it, what client it was au-

thorized for, when it expires from the AS to the

RS. The use of a structured token value like JSON

Web Token (JWT) is recommended. JWT is a

compact, URL-safe means of representing claims

to be transferred between two parties [9].

JWTs are good constructs being that it's a blob

of JSON that can be signed and encrypted in a way

that won't get mucked up in transit. JWTs define

a set of common claims, such as issuer, audience,

subject, and other bits needed for a security object.

The RS gets handed a JWT, it parses the JWT,

checks the signature or decrypts it, reads the

Fig. 1. Proposed system model.

313A Secure Social Networking Site based on OAuth Implementation

claims, sees who the token is for and what it is

for and if it’s expiry. The RS therefore gets every-

thing it needs from that.

4. IMPLEMENTATION AND ANALYSIS
4.1 Implementation
Access tokens can be used as proof of authenti-

cation. Since an authentication usually occurs

ahead of the issuance of an access token, it is pos-

sible to consider reception of an access token of

any type proof that such an authentication has

occurred.

Access of a protected API can also be used as

a proof of authentication. Since the access token

can be traded for a set of user attributes, it is viable

to assume that possession of a valid access token

is enough to prove that a user is authenticated.

This is especially true in cases where the token

was freshly minted in the context of a user being

authenticated at the authorization server.

Authentication of the user who is trying to ac-

cess OwnCloud via a third party is also established

based on the integration of the OAuth 2.0 protocol

which acts to establish identity management. A

dialogue notification pops up upon any access giv-

ing the owner (OwnCloud) the authority to either

grant access or deny access and also to determine

the scope and sharing limitations of the access.

Token Assertion is done by the by Resource

Server. This works on the assumption that the RS

will be able to call the AS for each token that it

sees, and that there is no problem with the extra

network traffic. Thus there is the accuracy/per-

formance tradeoff in most networked systems: you

can have live information by calling the author-

itative source in real time (using introspection) or

you can have self-contained information that you

don't have to make a network call for (using JWT).

You can, of course, cache the introspection call, and

most implementations do this on the client side, at

least to an extent.

4.2 Analysis
4.2.1 Performance evaluation

To evaluate the performance of the server after

applying before and after integration of the OAuth

2.0 security protocol, a load tester JMeter is used.

The Apache JMeter is an open source java soft-

ware application designed to load test functional

behavior and measure performance. This works by

simulating multiple users to have access to the

server concurrently. There are three main parame-

ters that are considered in this simulation.

• Number of threads: This represents the num-

ber of users connected to the target website.

• Ramp-Up period: This denotes the time it

takes for a user to start a new session.

• Loop count: This denotes the number of re-

quest for each user.

The number of users is then varied in sets of

tens from 10 all the way to 100 for this particular

scenario. The application is set to handle 10 user

requests with a Ramp-Up period of 1 second. The

Rump-Up period determines how long the next

user should take to begin a new session. The figure

2 below shows a comparison of the performance

results between three different identity manage-

ment protocols OAuth 2.0, SAML and OpenID.

The result shows that the performance of

OwnCloud as the number of users’ increases con-

siderably increases the response time.

Fig. 2. Comparison between performance test results.

314 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 19, NO. 2, FEBRUARY 2015

Using the same values in the required parame-

ters, it was observed that the response time ac-

cording to the increase of the users was higher in

an implementation instance where OpenID protocol

was integrated as compared to an instance where

either OAuth 2.0 or SAML protocol was used. This

means that the integration of OAuth security pro-

tocol with the OwnCloud environment results in a

better performance compared to other identity

management protocols.

JWTs define a set of common claims which if

packed into a token could raise some issues:

• The token could become rather large and un-

wieldy if there is a lot to say about the author-

ization context.

• There is the risk of the client being able to

read what is in the token, which might leak sensi-

tive information.

4.2.2 Security Analysis

Access token can be used as a proof of authenti-

cation. Since an authentication usually occurs

ahead of the issuance of an access token, it can

be considered the reception of an access token as

any type of proof of authentication. OAuth tokens

are opaque to clients, which mean they do not have

to read the token to use it, but that does not mean

that a client cannot try to read the token and get

something useful out of it. This can be combatted

by encrypting the token, but even the JWT specifi-

cation says that the best way to avoid privacy

leakage issues is to just not put sensitive in-

formation inside the token itself. And it also as-

sumes that the owner is okay with tokens being

good until they expire, because if the RS is parsing

the token on its own, there is no good way to re-

voke a token once it is in flight.

However, this can be combatted by having short

enough timeouts on the tokens. Alternatively, the

RS can have a service it calls at runtime to get

information about the token in the context of its

authorization decision, then find out in real time if

the token has been revoked or not. And if it is mak-

ing that call, it could also just as easily find out

all of the important meta-information about that

token. Token Introspection defines a very simple

HTTP service that lets an RS send the token over

in a POST and get back a JSON document that

says what the token is good for. Introspection

re-uses the claims defined in JWT and adds a few

of its own. The RS authenticates to the AS during

this call so that nobody can go search for token

information.

5. CONCLUSION
In this paper, we proposed the implementation

of OAuth 2.0 security protocol into the OwnCloud

platform environment. This implementation is to

enable secure access of the OwnCloud stored data

during communication between OwnCloud and

other third-party applications. The third-party ap-

plications considered in this particular case are the

online social networking sites. We have used

Facebook and Twitter as the demonstration social

networks in order to implement this particular

protocol. The implementation has thus proved that

the integration has provided secure access by al-

lowing OAuth 2.0 security protocol to act as the

identity management tool between OwnCloud and

the Social Networking Sites by providing user ver-

ification and authentication. OwnCloud is therefore

tasked with the authority to grant or deny access

to any third-parties and to also determine the scope

of what can be accessed or shared. It has also fur-

ther prevented the conventional method of sharing

user credentials which include username and

password.

The performance result testing for OwnCloud

with OAuth 2.0 security protocol integration was

plotted in a comparison graph with the use of the

same values in the required parameters. Based on

the performance results, it was observe that the

response time with an increase in the number of

315A Secure Social Networking Site based on OAuth Implementation

users was higher in an OwnCloud instance where

OpenID and SAML protocols were used as opposed

to an instance where OAuth protocol was

integrated. This means that the integration of

OAuth security protocol within the OwnCloud en-

vironment has resulted in a better performance.

REFERENCES
[1] Tae-Wong Seo, Man-Gon Park and Chang-

Soo Kim, “Design and Implementation of the

Extraction Mashup for Reported Disaster

Information on SNSs,“ Journal of Korea

Multimedia Society, Vol. 16, No. 11, pp. 1297-

1304, 2013.

[2] D. Hardt, The OAuth 2.0 Authorization

Framework, RFC 6749, 2012.

[3] A. Santana de Oliveira, G. Serme, and Y.

Lehmann, "Platform-level Support for Autho-

rization in Cloud Service with OAuth 2,"

P roceedings of Intercloud Workshop Co-lo-

cated with IEEE International Conference on

Cloud Engineering, pp.458-465, 2014.

[4] Yang and S. Manoharan, "A Security Anal-

ysis of the OAuth Protocol," Proceeding of

IEEE Pacific Rim Conference on Communi-

cations, Computers, and Signal Processing,

pp. 271-276, 2013.

[5] Hammer-Lahav, The OAuth 1.0 protocol, The

Internet Eng. Task Force RFC 5849, 2010.

[6] Er. Gurleen Kaur and Er. Deepak Aggarwal,

“A Survey Paper on Social Sign-On Protocol

OAuth 2.0,” Journal of Engineering Compu-

ters & Applied Sciences, Vol. 2, No. 6, pp.

93-96, 2013.

[7] ownCloud’s Architecture Overview, https://

owncloud.com/whitepapers (accessed, 11, Feb.,

2016).

[8] Paulo Jorge Correia, Providing Single Sign on

(SSO) with Enterprise Identity Services and

Directory Integration, Cisco Public BRKUCC-

2664, USA, 2015.

[9] JSON Web Token (JWT), https://tools.

ietf.org/html/draft-ietf-oauth-json-web-to-

ken-32 (accessed, 11, Feb., 2016).

Mark Brian Otieno

Aug. 2011. Daystar University

in Kenya (B. Sc.)

Feb. 2016. Department of IT

Convergence and Application

Engineering in Pukyong

National University (M.Sc,)

Field of Study : Mobile Security, Access Cpontrol,

User Authentication

Kyung-Hyune Rhee

Feb. 1982. Department of Ma-

thematical Education, Kyung-

puk National University. (B.

Sc)

Feb. 1985 Department of Applied

Mathematics in Korea Ad-

vanced Institute of Science

and Technology (M. Sc.)

Aug. 1992 Department of Mathematics in Korea

Advanced Institute of Science and Technology

(Phd..)

Mar. 1993～Present Professor at Department of IT

Convergence and Application Engineering in

Pukyong National University

Field of Study : Intelligence Security, Cryptographic

Protocols, Applied Cryptography, Multimedia Security,

IoT security

