DOI QR코드

DOI QR Code

Comparison of T1rho and T2 Mapping of Knee Articular Cartilage in an Asymptomatic Population

  • Yoon, Min A (Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine) ;
  • Hong, Suk-Joo (Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine) ;
  • Im, A Lan (Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine) ;
  • Kang, Chang Ho (Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine) ;
  • Kim, Baek Hyun (Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine) ;
  • Kim, In Seong (Siemens Healthcare)
  • Received : 2016.05.26
  • Accepted : 2016.07.14
  • Published : 2016.11.01

Abstract

Objective: To analyze subregional differences in T1rho ($T1{\rho}$) and T2 values and their correlation in asymptomatic knee cartilage, and to evaluate angular dependence with magic angles. Materials and Methods: Six asymptomatic volunteers underwent knee MRI with $T1{\rho}$ and T2 mapping. $T1{\rho}$ and T2 values were measured by two radiologists independently, at nine subregions in the medial femoral condyle (MFC) cartilage, at angles of ${\pm}0^{\circ}$, $15^{\circ}$, $35^{\circ}$, $55^{\circ}$, $75^{\circ}$ respective to a vertical line (B0) bisecting the width of the distal femur, and at two locations in the patella. Subregional values of $T1{\rho}$ and T2 were analyzed and significant differences in three divided portions of the MFC (anterior, central, and posterior) were statistically evaluated. Correlation between $T1{\rho}$ and T2 and angular dependence with magic angles were also assessed for statistical significance. Results: $T1{\rho}$ values were lowest at $+15^{\circ}$ and highest at $-55^{\circ}$. T2 values were lowest at $+75^{\circ}$ and highest at $+35^{\circ}$. Both $T1{\rho}$ and T2 were higher in superior patella than inferior patella. $T1{\rho}$ showed significant differences in the three divided portions of the MFC, while T2 showed significant differences only between central and posterior portions. There was a weak correlation between $T1{\rho}$ and T2 (r = 0.217, p = 0.127). $T1{\rho}$ showed more angular dependence than T2. Conclusion: $T1{\rho}$ and T2 showed different subregional values and angular dependence in asymptomatic knee cartilage with a weak correlation. Awareness of these differences will aid in assessment of cartilage in a specific subregion of the knee.

Keywords

References

  1. Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 2000;133:635-646 https://doi.org/10.7326/0003-4819-133-8-200010170-00016
  2. Nuesch E, Dieppe P, Reichenbach S, Williams S, Iff S, Juni P. All cause and disease specific mortality in patients with knee or hip osteoarthritis: population based cohort study. BMJ 2011;342:d1165 https://doi.org/10.1136/bmj.d1165
  3. Li X, Pai A, Blumenkrantz G, Carballido-Gamio J, Link T, Ma B, et al. Spatial distribution and relationship of T1rho and T2 relaxation times in knee cartilage with osteoarthritis. Magn Reson Med 2009;61:1310-1318 https://doi.org/10.1002/mrm.21877
  4. Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging 2006;23:547-553 https://doi.org/10.1002/jmri.20536
  5. Li X, Benjamin Ma C, Link TM, Castillo DD, Blumenkrantz G, Lozano J, et al. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage 2007;15:789-797 https://doi.org/10.1016/j.joca.2007.01.011
  6. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004;232:592-598 https://doi.org/10.1148/radiol.2322030976
  7. Keenan KE, Besier TF, Pauly JM, Han E, Rosenberg J, Smith RL, et al. Prediction of glycosaminoglycan content in human cartilage by age, $T1\rho$ and T2 MRI. Osteoarthritis Cartilage 2011;19:171-179 https://doi.org/10.1016/j.joca.2010.11.009
  8. Mlynarik V, Trattnig S, Huber M, Zembsch A, Imhof H. The role of relaxation times in monitoring proteoglycan depletion in articular cartilage. J Magn Reson Imaging 1999;10:497-502 https://doi.org/10.1002/(SICI)1522-2586(199910)10:4<497::AID-JMRI1>3.0.CO;2-T
  9. Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004;8:355-368 https://doi.org/10.1055/s-2004-861764
  10. Grunder W, Wagner M, Werner A. MR-microscopic visualization of anisotropic internal cartilage structures using the magic angle technique. Magn Reson Med 1998;39:376-382 https://doi.org/10.1002/mrm.1910390307
  11. Mlynarik V, Degrassi A, Toffanin R, Vittur F, Cova M, Pozzi-Mucelli RS. Investigation of laminar appearance of articular cartilage by means of magnetic resonance microscopy. Magn Reson Imaging 1996;14:435-442 https://doi.org/10.1016/0730-725X(96)00025-2
  12. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 2001;177:665-669 https://doi.org/10.2214/ajr.177.3.1770665
  13. Akella SV, Regatte RR, Wheaton AJ, Borthakur A, Reddy R. Reduction of residual dipolar interaction in cartilage by spin-lock technique. Magn Reson Med 2004;52:1103-1109 https://doi.org/10.1002/mrm.20241
  14. Buck FM, Bae WC, Diaz E, Du J, Statum S, Han ET, et al. Comparison of T1rho measurements in agarose phantoms and human patellar cartilage using 2D multislice spiral and 3D magnetization prepared partitioned k-space spoiled gradient-echo snapshot techniques at 3 T. AJR Am J Roentgenol 2011;196:W174-W179 https://doi.org/10.2214/AJR.10.4570
  15. Eckstein F, Ateshian G, Burgkart R, Burstein D, Cicuttini F, Dardzinski B, et al. Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthritis Cartilage 2006;14:974-983 https://doi.org/10.1016/j.joca.2006.03.005
  16. Rogers BA, Murphy CL, Cannon SR, Briggs TW. Topographical variation in glycosaminoglycan content in human articular cartilage. J Bone Joint Surg Br 2006;88:1670-1674
  17. Nozaki T, Kaneko Y, Yu HJ, Kaneshiro K, Schwarzkopf R, Hara T, et al. T1rho mapping of entire femoral cartilage using depth- and angle-dependent analysis. Eur Radiol 2016;26:1952-1962 https://doi.org/10.1007/s00330-015-3988-5
  18. Shiomi T, Nishii T, Nakata K, Tamura S, Tanaka H, Yamazaki Y, et al. Three-dimensional topographical variation of femoral cartilage T2 in healthy volunteer knees. Skeletal Radiol 2013;42:363-370 https://doi.org/10.1007/s00256-012-1522-2
  19. Hannila I, Raina SS, Tervonen O, Ojala R, Nieminen MT. Topographical variation of T2 relaxation time in the young adult knee cartilage at 1.5 T. Osteoarthritis Cartilage 2009;17:1570-1575 https://doi.org/10.1016/j.joca.2009.05.011
  20. Yoon HJ, Yoon YC, Choe BK. T2 values of femoral cartilage of the knee joint: comparison between pre-contrast and post-contrast images. Korean J Radiol 2014;15:123-129 https://doi.org/10.3348/kjr.2014.15.1.123
  21. Kaneko Y, Nozaki T, Yu H, Chang A, Kaneshiro K, Schwarzkopf R, et al. Normal T2 map profile of the entire femoral cartilage using an angle/layer-dependent approach. J Magn Reson Imaging 2015;42:1507-1516 https://doi.org/10.1002/jmri.24936
  22. Calvo E, Palacios I, Delgado E, Sanchez-Pernaute O, Largo R, Egido J, et al. Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis. Osteoarthritis Cartilage 2004;12:878-886 https://doi.org/10.1016/j.joca.2004.07.007
  23. Xia Y. Relaxation anisotropy in cartilage by NMR microscopy (muMRI) at 14-microm resolution. Magn Reson Med 1998;39:941-949 https://doi.org/10.1002/mrm.1910390612

Cited by

  1. Clinical Feasibility of Synthetic Magnetic Resonance Imaging in the Diagnosis of Internal Derangements of the Knee vol.19, pp.2, 2016, https://doi.org/10.3348/kjr.2018.19.2.311
  2. T1ρ and T2 mapping for the determination of articular cartilage denaturalization with osteonecrosis of the femoral head: A prospective controlled trial vol.49, pp.3, 2019, https://doi.org/10.1002/jmri.26267
  3. Quantitative MRI Musculoskeletal Techniques: An Update vol.213, pp.3, 2019, https://doi.org/10.2214/ajr.19.21143
  4. T1rho and T2 mapping of ankle cartilage of female and male ballet dancers vol.61, pp.10, 2016, https://doi.org/10.1177/0284185120902381
  5. Fat-suppressed T2 mapping of human knee femoral articular cartilage: comparison with conventional T2 mapping vol.22, pp.1, 2016, https://doi.org/10.1186/s12891-021-04542-9