DOI QR코드

DOI QR Code

Effects of Hydrogen Reduction in Microstructure, Mechanical and Thermoelectric Properties of Gas Atomized n-type Bi2Te2.7 Se0.3 Material

  • Rimal, Pradip (Division of Advanced Materials Engineering, Kongju National University) ;
  • Yoon, Sang-Min (Division of Advanced Materials Engineering, Kongju National University) ;
  • Kim, Eun-Bin (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Chul-Hee (Division of Advanced Materials Engineering, Kongju National University) ;
  • Hong, Soon-Jik (Division of Advanced Materials Engineering, Kongju National University)
  • Received : 2016.04.04
  • Accepted : 2016.04.20
  • Published : 2016.04.28

Abstract

The recent rise in applications of thermoelectric materials has attracted interest in studies toward the fabrication of thermoelectric materials using mass production techniques. In this study, we successfully fabricate n-type $Bi_2Te_{2.7}Se_{0.3}$ material by a combination of mass production powder metallurgy techniques, gas atomization, and spark plasma sintering. In addition, to examine the effects of hydrogen reduction in the microstructure, the thermoelectric and mechanical properties are measured and analyzed. Here, almost 60% of the oxygen content of the powder are eliminated after hydrogen reduction for 4 h at $360^{\circ}C$. Micrographs of the powder show that the reduced powder had a comparatively clean surface and larger grain sizes than unreduced powder. The density of the consolidated bulk using as-atomized powder and reduced atomized powder exceeds 99%. The thermoelectric power factor of the sample prepared by reduction of powder is 20% better than that of the sample prepared using unreduced powder.

Keywords

References

  1. D. M. Rowe: CRC Handbook of Thermoelectrics, CRC Press LLC, Boca Raton, 1995.
  2. G. J. Snyder and E. S. Toberer: Nat. Mater., 7 (2008) 105. https://doi.org/10.1038/nmat2090
  3. Y. Lan, A. J. Minnich, G. Chen and Z. Ren: Adv. Funct. Mater., 20 (2010) 357. https://doi.org/10.1002/adfm.200901512
  4. L. D. Zhao, B.-P. Zhang, W. S. Liu, H. L. Zhang and J.-F. Li: J. Alloys Compd., 467 (2009) 91. https://doi.org/10.1016/j.jallcom.2007.12.063
  5. K. T. Kim, I. Son and G. H. Ha: J. Korean Powder Metall. Inst., 20 (2013) 345. https://doi.org/10.4150/KPMI.2013.20.5.345
  6. C. J. Vineis, A. Shakouri, A. Majumdar and M. G. Kanatzidis: Adv. Mater., 22 (2010) 3970. https://doi.org/10.1002/adma.201000839
  7. A. Hruban, A. Materna, W. Dalecki, G. Strzelecka, M. Piersa, E. J.-Wegner, R. Diduszko, M. Romaniec and W. Orlowski: Acta Phys. Pol. A, 120 (2011) 950. https://doi.org/10.12693/APhysPolA.120.950
  8. J. Jiang, L. Chen, S. Bai, Q. Yao and Q. Wang: Mater. Sci. Eng. B, 117 (2005) 334. https://doi.org/10.1016/j.mseb.2005.01.002
  9. C. H. Lim, D. C. Cho, Y. S. Lee and C. H. Lee: J. Korean Phys. Soc., 46 (2005) 995.
  10. H. P. Ha, Y. J. Oh, D. B. Hyun and E. P. Yoon: Int. J. Soc. Mater. Eng. Resour., 10 (2002) 130. https://doi.org/10.5188/ijsmer.10.130
  11. C.-H. Kuo, C.-S. Hwang, M.-S. Jeng, W.-S. Su, Y.-W. Chou and J.-R. Ku: J. Alloys Compd., 496 (2010) 687. https://doi.org/10.1016/j.jallcom.2010.02.171
  12. H.-S. Kim and S.-J. Hong: J. Alloys Compd., 586 (2014) S428. https://doi.org/10.1016/j.jallcom.2013.05.163
  13. S.-J. Hong and B.-S. Chun: Mater. Res. Bull., 38 (2003) 599. https://doi.org/10.1016/S0025-5408(03)00022-9
  14. L. D. Zhao, B.-P. Zhang, J.-F. Li, M. Zhou and W. S. Liu: Physica B Condens. Matter, 400 (2007) 11. https://doi.org/10.1016/j.physb.2007.06.009
  15. D. H. Kim, C. Kim, S. H. Heo and H. Kim: Acta Mater., 59 (2011) 405. https://doi.org/10.1016/j.actamat.2010.09.054
  16. S.-J. Hong, Y.-S. Lee, J.-W. Byeon and B.-S. Chun: J. Alloys Compd., 414 (2006) 146. https://doi.org/10.1016/j.jallcom.2005.03.115
  17. F. Li, X. Huang, Z. Sun, J. Ding, J. Jiang, W. Jiang and L. Chen: J. Alloys Compd., 509 (2011) 4769. https://doi.org/10.1016/j.jallcom.2011.01.155
  18. C.-H. Lee, M. F. Kilicaslan, B. Madavali and S.-J. Hong: Res. Chem. Intermed., 40 (2014) 2543. https://doi.org/10.1007/s11164-014-1666-x
  19. S.-J. Hong and B.-S. Chun: Mater. Sci. Eng. A, 356 (2003) 345. https://doi.org/10.1016/S0921-5093(03)00147-3

Cited by

  1. Investigation of Spark Plasma Sintering Temperature on Microstructure and Thermoelectric Properties of p-type Bi-Sb-Te alloys vol.24, pp.2, 2017, https://doi.org/10.4150/KPMI.2017.24.2.115
  2. The Preparation and Growth Mechanism of the Recovered Bi2Te3 Particles with Respect to Surfactants vol.24, pp.2, 2017, https://doi.org/10.4150/KPMI.2017.24.2.141