DOI QR코드

DOI QR Code

배양방법에 따른 Euglena gracilis의 성장 및 지방산 조성

Effects of Culture Methods on the Growth Rates and Fatty Acid Profiles of Euglena gracilis

  • 정우철 (경상대학교 해양식품생명의학과) ;
  • 최종국 (경상대학교 해양식품생명의학과) ;
  • 강창민 (안전성평가연구소 경남환경독성본부) ;
  • 최병대 (경상대학교 해양식품생명의학과) ;
  • 강석중 (경상대학교 해양식품생명의학과)
  • Jeong, U-Cheol (Department of Seafood and Aquaculture Science, Gyeongsang National University) ;
  • Choi, Jong-Kuk (Department of Seafood and Aquaculture Science, Gyeongsang National University) ;
  • Kang, Chang-Min (Institute of Toxicology) ;
  • Choi, Byeong-Dae (Department of Seafood and Aquaculture Science, Gyeongsang National University) ;
  • Kang, Seok-Joong (Department of Seafood and Aquaculture Science, Gyeongsang National University)
  • 투고 : 2016.01.16
  • 심사 : 2016.02.17
  • 발행 : 2016.02.28

초록

The quality and quantity of live food sources strongly influence the success of fish production in farming operations. Thus, critical studies of live forage species are a crucial element for progress in fish aquaculture. The fat content of food is an especially important determinant of growth in marine fish. Omega-3 highly unsaturated fatty acids (HUFA) are essential components of diet that determine the nutritional value of larval fish. Euglena is a protist that has potential as a forage species. These single-celled organisms have plant and animal characteristics they are motile, elliptical in shape and 15–500 μm in diameter. Their nutritional content is excellent, but most studies have focused on cells raised in autotrophic culture. We therefore examined differences in the lipid and fatty acid contents, and the growth of Euglena cells grown under autotrophic, heterotrophic, and mixotrophic conditions. Biomass production reached 15.03 g/L, 12.28 g/L, and 3.66 g/L under mixotrophy, heterotrophy, and autotrophy, respectively. The proportional n-3 HUFA content differed among culture methods: 10.04%, 5.80% and 10.01% in mixotrophic, heterotrophic and autotrophic cultures, respectively. Mixotrophy was to be the best form of cultivation for improving the growth and nutritional content of Euglena.

키워드

참고문헌

  1. Barsanti LR, Bastianini A, Passarelli V, Tredici MR and Gualtieri P. 2000a. Fatty acid content in wild type and WZSL mutant of Euglena gracilis. J Appl Phycol 12, 515-520. https://doi.org/10.1023/A:1008187514624
  2. Barsanti LR, Vismara R, Passarelli V and Gualtieri P. 2000b. Paramylon(b-1,3- glucan) contentin wild type and WZSL mutant of Euglena gracilis. Effectsof growth conditions. J Appl Phycol 13, 59-65.
  3. Bligh EG and Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911-917. https://doi.org/10.1139/o59-099
  4. Chae SR, Hwang EJ and Shin HS. 2006. Single cell protein production of Euglena Gracilis and carbondioxide fixation in an innovative photo-bioractor. Bioresour Technol 97, 322-329. https://doi.org/10.1016/j.biortech.2005.02.037
  5. Choi JA, Oh TH, Choi JS, Chang DJ and Joo CK. 2013. Impactof beta-1,3-glucanisolated from Euglena gracilis on cornealepithelial cell migration and on wound healing in a rat alkaliburn model. Curr Eye Res 38, 1207-1213. https://doi.org/10.3109/02713683.2013.811262
  6. Chisti Y and Yan J. 2011. Energy from algae: current status and future trends algal biofuels a status report. Appl Energy 88, 3277-3279. https://doi.org/10.1016/j.apenergy.2011.04.038
  7. Choi SW, Park IK and Park BS. 2004. Effect of dietary supplementation of fresh water algae euglena on the performance and egg quality and fatty acid composition of egg yolk in laying hens. Korean J Poult Sci 31, 283-291.
  8. Coleman LW, Rosen BH and Schwartzbach SD. 1988. Environmental-control of carbohydrate and lipid-synthesis in Euglena. Plant Cell Physiol 29, 423-432.
  9. Courchesne NMD, Parisien A, Wang B and Lan CQ. 2009. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141, 31-41. https://doi.org/10.1016/j.jbiotec.2009.02.018
  10. Cramer M and Myers J. 1952. Growth and photosynthetic characteristics of Euglenagracilis. Arch Microbiol 17, 384-402.
  11. Dos SFV, Rocchetta I, Conforti V, Bench S, Feldman R and Levin M. 2007. Gene expression patterns in Euglena gracilis: insights into the cellular response to environmental stress. Gene 389, 136-145. https://doi.org/10.1016/j.gene.2006.10.023
  12. Duncan DB. 1955. Multiple range and multiple F test. Biometric 11, 1-42. https://doi.org/10.2307/3001478
  13. El-Sheekh MM and Fathy A. 2009. Variation of some nutritional constituents and fatty acid profiles of chlorella vulgaris beijerinck grown under auto and heterotrophic conditions. Intern J Botany 5, 153-159 https://doi.org/10.3923/ijb.2009.153.159
  14. Girotti AW. 2001. Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J Photochem Photobiol 63, 103-113. https://doi.org/10.1016/S1011-1344(01)00207-X
  15. Harwood JL. 1988. Fatty acid metabolism. Ann Rev Plant Physiol Plant Mol Biol 39, 101-138. https://doi.org/10.1146/annurev.pp.39.060188.000533
  16. Hayashi M, Toda K, Yoneji T, Sato O and Kitaoka S. 1992. Dietary value of rotifer and artemia enriched with Euglena gracilis for red sea bream. Nippon Suisan Gakkaishi 59, 1051-1058.
  17. Hayashi M, Kyoji T, Hiroto I, Reiko K and Shozaburo K. 1994. Effects of shifting pH in the stationary phase of growth on the chemical composition of Euglena gracilis. Biosci Biotech Biochem 58, 1964-1967. https://doi.org/10.1271/bbb.58.1964
  18. Honda D, Yokochi T, Nakahara T, Erata M and Higashihara T. 1998. Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in West Pacific Ocean. Mycol Res 102, 439-448. https://doi.org/10.1017/S0953756297005170
  19. Ishikawa T, Nishikawa H, Gao Y, Sawa Y, Shibata H, Yabuta Y, Maruta T and Shigeoka S. 2008. The pathwayvia D-galacturonate/L-galactonate is significant for ascorbate-biosynthesis in Euglena gracilis. J Biol Chem 283, 31133-31141. https://doi.org/10.1074/jbc.M803930200
  20. James GW and Browse J 1999. The Δ8-Desaturase of Euglena gracilis: An alternate pathway for synthsis of 20-carbon polyunsaturated fatty acids. Archiv Biochem Biophys 365, 307-316. https://doi.org/10.1006/abbi.1999.1167
  21. Jasso-Chávez R, Pacheco-Rosales A, Lira-Silva E, Gallardo-Pè rez JC, García N and Moreno-Sánchez R. 2010. Toxic effects of Cr(VI) and Cr(III) on energy metabolism of heterotrophic Euglena gracilis. Aquat Toxicol 100, 329-338. https://doi.org/10.1016/j.aquatox.2010.08.006
  22. Jiang Y and Chen F. 2000. Effect of temperature and temperature shift on docosahexaenoic acid production by the marine microalgae Crypthecodiniumcohnii. JAOCS, 77, 613-617. https://doi.org/10.1007/s11746-000-0099-0
  23. Kim JT and Boo SM. 1998. Morphology, population size and environmental factors of two morphotypes in Euglena geniculate (Euglenophyceae) in Korea. Algological Studies 91, 27-36.
  24. Lira-Silva E, Ramírez-Lima IS, Olín-Sandoval V, García-García JD, García-Contreras R, Moreno-Sánchez R and Jasso-Chávez R. 2011. Removal, accumulation and resistance to chromium in heterotrophic Euglena gracilis. J Hazard Mater 193, 216-224. https://doi.org/10.1016/j.jhazmat.2011.07.056
  25. Navarro L, Torres-Marquez ME, González-Moreno S, Devars S, Hernández R and Moreno-Sánchez R. 1997. Comparison of physiological changes in Euglena gracilis during exposure to heavy metals of heterotrophic and autotrophic cells. Comp Biochem Physiol 116C, 265-272.
  26. Ramalho JC, Campos PC, Teixeira M and Nunes MA. 1998. Nitrogen dependent changes in antioxidant system and in fatty acid composition of chloroplast membranes from Coffea arabica L. plants submitted to high irradiance. Plant Sci 135, 115-124. https://doi.org/10.1016/S0168-9452(98)00073-9
  27. Regnault A, Chervin D, Chammal A, Piton F, Calvayrac R and Mazliak P. 1995. Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance. Phytochemistry 40, 725-733. https://doi.org/10.1016/0031-9422(95)00268-C
  28. Rocchetta I, Conforti V, Mazzuca M, Balzaretti V and Ríos deMolina MC. 2006. Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environ Pollut 141, 353-358. https://doi.org/10.1016/j.envpol.2005.08.035
  29. Rodríguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernández G and Moreno-Sánchez R. 2010. Increased synthesis of a-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 1096, 2160-2172,
  30. Ruiz LB, Rocchetta I, dos Santos Ferreira V and Conforti VTD. 2004. Isolation, culture and characterization of a new strain of Euglena gracilis. New strain of Euglena gracilis. Phycol Res 52, 168-174. https://doi.org/10.1111/j.1440-1835.2004.tb00325.x
  31. Thompson PA, Guo M, Harrison PJ and Whyte JNC. 1992. Effects of variation in temperature: ωⅡ. On the fatty acid composition of eight species of marine phytoplankton. J Phycol 28, 488-497. https://doi.org/10.1111/j.0022-3646.1992.00488.x
  32. Tucci S, Proksch P and Martin W. 2006. Fatty acid biosynthesis in mitochondria of Euglena gracilis. In: Benning, C., Ohlrogge, J. (Eds.), Advances in Plant Lipid Research: Proceedings of the 17th International Symposium on Plant Lipids, East Lansing, Michigan, July 2006. Michigan State University Press, pp 133-136.
  33. Volkman JK, Barrett SM, Blackburn SI, Mansoup MP, Siwes EL and Gelin F. 1998. Microalgal biomaekers: A review of recent research developments. Org Geochem 29, 1163-1179. https://doi.org/10.1016/S0146-6380(98)00062-X
  34. Walne PL.1980. In phytoflagellates. Elsevier, north Holland. Euglenoid flagellates pp.165-212
  35. Watanabe M and Suzuki T. 2002. Involvement of reactive oxygen stress in damium-induced cellular damage in Euglena gracilis. Comp Biochem Physiol Part C 131, 491-500. https://doi.org/10.1016/S1096-4959(02)00006-4