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Abstract. In this paper, we first propose a fast one-parameter relaxation
(FOPR) method with a scaled preconditioner for solving the saddle point
problems, and then we present a formula for finding its optimal param-

eter. To evaluate the effectiveness of the proposed FOPR method with
a scaled preconditioner, numerical experiments are provided by comparing
its performance with the existing one or two parameter relaxation methods
with optimal parameters such as the SOR-like, the GSOR and the GSSOR

methods.
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1. Introduction

We consider a fast one-parameter relaxation method with a scaled precondi-
tioner for solving the saddle point problem(

A B

−BT 0

)(
x

y

)
=

(
b

−q

)
, (1)

where A ∈ Rm×m is a symmetric positive definite matrix, and B ∈ Rm×n

is a matrix of full column rank. This problem (1) appears in many different
scientific applications, such as constrained optimization [9], the finite element
approximation for solving the Navier-Stokes equation [5, 6], and the constrained
least squares problems and generalized least squares problems [1, 3, 12]. So many
authors have proposed one or two parameter relaxation iterative methods for
solving the saddle point problem (1). Golub et al. [7] proposed the one-parameter
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SOR-like method and presented an incomplete formula for finding one optimal
parameter, Bai et al. [3] proposed the two-parameter GSOR (Generalized SOR)
method and presented a formula for finding two optimal parameters for the
GSOR and a complete formula for finding one optimal parameter for SOR-like
method, Zhang and Lu [14] studied the two-parameter GSSOR (Generalized
symmetric SOR) method and Chao et al [4] presented a formula for finding two
optimal parameters for the GSSOR, and so on [10, 13].

This paper is organized as follows. In Section 2, we propose a fast one-
parameter relaxation (FOPR) method with a scaled preconditioner, and then
we present a formula for finding its optimal parameter. In Section 3, numerical
experiments are provided to examine the effectiveness of the proposed FOPR
method with a scaled preconditioner by comparing its performance with the
existing one or two parameter relaxation methods with optimal parameters such
as the SOR-like, the GSOR and the GSSOR methods. Lastly, some conclusions
are drawn.

2. Convergence of a fast one-parameter relaxation (FOPR) method

For the coefficient matrix of the augmented linear system (1), we consider the
following splitting (

A B

−BT 0

)
= D − L− U, (2)

where

D =

(
A 0

0 Q

)
, L =

(
0 0

BT 0

)
, U =

(
0 −B

0 Q

)
,

and Q ∈ Rn×n is a symmetric positive definite matrix which approximates
BTA−1B. Let

z =

(
x

y

)
, c =

(
b

−q

)
, Ω =

(
ωIm 0

0 1
ω In

)
,

where ω > 0 is a relaxation parameter, Im ∈ Rm×m and In ∈ Rn×n denote
the identity matrices of order m and n, respectively. Then a fast one-parameter
relaxation (FOPR) method for solving the saddle point problem (1) is defined
by

zk+1 = Tω zk + gω, k = 0, 1, 2, . . . , (3)

where Tω = (D − ΩL)−1((I − Ω)D + ΩU) is an iteration matrix for the FOPR
method, gω = Ω c, and I is an identity matrix of order m + n. That is, the
FOPR method is defined by

xk+1 =(1− ω)xk + ωA−1(b−Byk)

yk+1 =yk + (ωQ)−1(BTxk+1 − q).
(4)

Note that the FOPR method can be viewed as a special case of the GSOR
method [3] with τ = 1

ω .
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Lemma 2.1 ([11]). Consider the quadratic equation x2 − bx + c = 0, where b
and c are real numbers. Both roots of the equation are less than one in modulus
if and only if |c| < 1 and |b| < 1 + c.

Let λ be an eigenvalue of Tω and

(
u

v

)
be the corresponding eigenvector. Then

we have (
(1− ω)A −ωB

0 Q

)(
u

v

)
= λ

(
A 0

− 1
ω BT Q

)(
u

v

)
,

or equivalently,

(1− λ− ω)Au = ωBv,

λ

ω
BTu = (λ− 1)Qv.

(5)

From now on, let ρ(H) denote the spectral radius of a square matrix H. The
following theorem provides the convergence result for the FOPR method.

Theorem 2.2. Let µmax be the spectral radius of Q−1BTA−1B. If µmax < 4,
then the FOPR method converges for all 0 < ω < 2− µmax

2 .

Proof. Let µ be an eigenvalue of Q−1BTA−1B and λ be an eigenvalue of Tω.
Then µ > 0. From equation (5), one can obtain the following quadratic equation
for λ

λ2 + (ω + µ− 2)λ+ 1− ω = 0. (6)

Applying Lemma 2.1 to (6), one easily obtains 0 < ω < 2 − µ
2 . If 0 < ω <

2− µmax

2 , then ρ(Tω) < 1, which completes the proof. �

Notice that if µmax ≥ 4 in Theorem 2.2, then the convergence region for which
the FOPR method converges may be an empty set. Next theorem provides an
optimal parameter ω for which the FOPR method performs best.

Theorem 2.3. Let µmin and µmax be the minimum and maximun eigenvalues of
Q−1BTA−1B, respectively. Assume that µmax < 4. Then the optimal parameter
ω for the FOPR method is given by ω = ωo, where

ωo = min{2√µmin − µmin, 2
√
µmax − µmax}.

Moreover ρ(Tωo) =
√
1− ωo. That is,

ρ(Tωo) =

{
|1−√

µmin | if ωo = 2
√
µmin − µmin

|1−√
µmax | if ωo = 2

√
µmax − µmax

. (7)

Proof. Let µ be an eigenvalue of Q−1BTA−1B and λ be an eigenvalue of Tω.
From the quadratic equation (6) for λ, one obtains two roots

λ =
1

2

(
(2− ω − µ)±

√
(ω + µ)2 − 4µ

)
.
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Let f(ω) = 2 − ω − µ and g(ω) = (ω + µ)2 − 4µ. The necessary and sufficient
condition for the roots λ to be real is g(ω) ≥ 0, which is equivalent to ω ≥
2
√
µ− µ. Since µmax < 4, 2

√
µ− µ < 2− µ

2 . Hence one obtains

|λ| =

{
1
2 ( |f(ω)|+

√
g(ω) ) if 2

√
µ− µ ≤ ω < 2− µ

2√
1− ω if 0 < ω ≤ 2

√
µ− µ

. (8)

Notice that (2
√
µ− µ) ∈ (0, 1] for µ ∈ (0, 4) and it has the maximum value 1 at

µ = 1. Since ∂
∂ω (|f |+

√
g) = sign(f)+ ω+µ√

g > 0 for ω ≥ 2
√
µ−µ, 1

2 (|f |+
√
g) is

an increasing function for ω ≥ 2
√
µ−µ. Clearly

√
1− ω is a decreasing function

for 0 < ω ≤ 2
√
µ − µ. Thus, (8) implies that given µ, |λ| takes the minimum√

1− ω = |1 −√
µ| when ω = 2

√
µ − µ. If S is a set containing all eigenvalues

of Q−1BTA−1B, then

min
ω

ρ(Tω) = max
µ

min
ω

|λ| = max
ω=2

√
µ−µ, µ∈S

√
1− ω =

√
1− ωo, (9)

where ωo = min{2√µmin −µmin, 2
√
µmax −µmax}. Hence the theorem follows.

�

As can be shown in Theorems 2.2 and 2.3, a big disadvantage of the FOPR
method is that it requires a rather strong condition µmax < 4 which may not
be true for some types of preconditioners Q. To remedy this problem, we need
to scale the preconditioner Q so that 0 < µmin, µmax < 4. From Theorem 2.3,
it can be also seen that in order to minimize ρ(Tωo), Q needs to be scaled so
that 2

√
µmin − µmin = 2

√
µmax − µmax. Next theorem shows how to scale the

preconditioner Q such that 0 < µmin, µmax < 4 and ρ(Tωo
) can be minimized.

Next theorem also shows an optimal convergence factor of the FOPR method
with a scaled preconditioner.

Theorem 2.4. Let µmin and µmax be the minimum and maximun eigenvalues
of Q−1BTA−1B, respectively. Let Qs = sQ be a scaled preconditioner, where
s > 0 is a scaling factor, and let νmin and νmax be the minimum and maximun

eigenvalues of Q−1
s BTA−1B, respectively. If s =

(√
µmin+

√
µmax

2

)2

, then 0 <

νmin, νmax < 4 and 2
√
νmin−νmin = 2

√
νmax−νmax. Moreover ω̃o = 2

√
νmin−

νmin = 2
√
νmax − νmax and

ρ(T̃ω̃o) = |1−
√
νmin | = |1−

√
νmax | =

√
µmax −√

µmin√
µmax +

√
µmin

,

where ω̃o and T̃ω refer to the optimal parameter and the iteration matrix for the
FOPR method with the scaled preconditioner Qs, respectively.
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Proof. Since Q−1
s BTA−1B = 1

sQ
−1BTA−1B, νmin = µmin

s and νmax = µmax

s .

Since s =
(√

µmin+
√
µmax

2

)2

, one obtains

νmin =
4µmin

(
√
µmax +

√
µmin)2

< 4,

νmax =
4µmax

(
√
µmax +

√
µmin)2

< 4.

(10)

Using (10), it can be easily shown that

2
√
νmin − νmin = 2

√
νmax − νmax =

4
√
µmin

√
µmax

(
√
µmax +

√
µmin)2

= ω̃o.

The remaining part of this theorem can be proved by simple calculation. �

From Theorem 2.4, it can be seen that optimal convergence factor of the
FOPR method with the scaled preconditioner Qs is the same as that of the
GSOR method [3] with the preconditioner Q. Notice that the scaling factor s
in Theorem 2.4 can be easily computed using MATLAB by computing only the
largest and smallest eigenvalues of Q−1BTA−1B.

We next summarize the formulas for finding optimal parameters of the SOR-
like, the GSOR and the GSSOR methods which are used for numerical experi-
ments in Section 3.

Remark 2.1 ([7, 3, 4]). Let µmin and µmax be the minimum and maximun
eigenvalues of Q−1BTA−1B, respectively. Then

(a) The optimal parameter ωo for the SOR-like method takes one of the
following 3 formulas depending upon the values of µmin and µmax (see [3]
for more details):

4

1 +
√
1 + 4(µmin + µmax)

,
2
√
µmin − 1

µmin
,
2
√
µmax − 1

µmax
.

(b) The optimal parameters ωo and τo for the GSOR method are given by

ωo =
4
√
µminµmax

(
√
µmin +

√
µmax)2

and τo =
1

√
µminµmax

.

(c) The optimal parameters ωo and τo for the GSSOR method are given by

ωo = 1±
√
µmax −√

µmax√
µmax +

√
µmax

and τo = 1 +
1±

√
1 + 4µminµmax

2
√
µminµmax

.

3. Numerical results

To evaluate the effectiveness of the FOPR method with a scaled precondi-
tioner, we provide numerical experiments by comparing its performance with
the SOR-like, the GSOR and the GSSOR methods. For performance compari-
son, both the FOPR method with preconditioner Q and the FOPR method with
scaled preconditioners Qs = sQ and Qs+ϵ = (s + ϵ)Q are provided, where s
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is the scaling factor defined in Theorem 2.4 and ϵ is a positive number which
is chosen appropriately small as compared with s. In Tables 2 to 5, Iter de-
notes the number of iteration steps and CPU denotes the elapsed CPU time in
seconds. In all experiments, the right hand side vector (bT ,−qT )T ∈ Rm+n

was chosen such that the exact solution of the saddle point problem (1) is
(xT

∗ , y
T
∗ )

T = (1, 1, . . . , 1)T ∈ Rm+n, and the initial vector was set to the zero
vector. From now on, let ∥·∥ denote the L2-norm.

Example 3.1 ([2]). We consider the saddle point problem (1), in which

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2p2×2p2

, B =

(
I ⊗ F

F ⊗ I

)
∈ R2p2×p2

,

and

T =
1

h2
Tridiag(−1, 2,−1) ∈ Rp×p, F =

1

h
Tridiag(−1, 1, 0) ∈ Rp×p,

with⊗ denoting the Kronecker product and h = 1
p+1 the discretization mesh size.

For this example, m = 2p2 and n = p2. Thus the total number of variables is 3p2.
We choose the matrix Q as an approximation to the matrix BTA−1B, according
to four cases listed in Table 1. The iterations for the relaxation iterative methods
are terminated if the current iteration satisfies ERR < 10−9, where ERR is
defined by

ERR =

√
∥xk − x∗∥2 + ∥yk − y∗∥2√
∥x0 − x∗∥2 + ∥y0 − y∗∥2

.

Numerical results for this example are listed in Tables 2 to 5. In Tables 4 and
5, numerical results for the FOPR method are not listed since it does not work
because of µmax > 4, and thus only those for the FOPR method with scaled
preconditioners Qs and Qs+ϵ are listed.

Example 3.2 ([3]). We consider the same problem as Example 3.1 except that
F is defined by

F =
1

h
K and K = (kij) =

(
1

2
√
2π

e−
(i−j)2

8

)
.

Note that the matrix F is a highly ill-conditioned Toeplitz matrix. So we
choose only Cases III and IV of Q in Table 1 as an approximation to the ma-
trix BTA−1B, and all iterations are terminated if the current iteration satisfies
RES < 10−9, where RES is defined by

RES =

√
∥b−Axk −Byk∥2 + ∥q −BTxk∥2√

∥b∥2 + ∥q∥2
.

Since µmax > 4 for these choices of Q, numerical results for the FOPR method
with scaled preconditioners Qs and Qs+ϵ are listed in Tables 4 to 5.
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All numerical tests are carried out on a PC equipped with Intel Core i5-4570
3.2GHz CPU and 8GB RAM using MATLAB R2014a. For numerical experi-
ments of all relaxation iterative methods used in this paper, the optimal param-
eters described in Remark 2.1 are used. For test runs of the FOPR method with
the scaled preconditioner Qs+ϵ, we have tried the values of ϵ ∈ [0.0001, 0.0005]
in Tables 2 and 3, and the values of ϵ ∈ [0.01, 0.05] in Tables 4 and 5. For all of
these values of ϵ, the FOPR method with Qs+ϵ performs better than the GSOR
method, and the values of ϵ for which it performs best are reported in Tables 2
to 5.

As can be expected from Theorem 2.4, the FOPR method with the scaled
preconditioner Qs performs as well as the GSOR method. The FOPR method
with the scaled preconditioner Qs+ϵ performs best of all methods considered
in this paper, and specifically it performs much better than other methods for
Cases III and IV of Q for which µmax > 4 (see Tables 2 to 5). On the other hand,
the GSSOR method performs worse than the FOPR and the GSOR methods
since its computational cost for each iteration is higher than others.

Table 1. Choices of the matrix Q.

Case Number Q Description

I Tridiag(BT Ã−1B) Ã = Tridiag(A)

II Tridiag(BTA−1B)

III BT Ã−1B Ã = Tridiag(A)

IV BT Ã−1B Ã = Diag(A)

4. conclusions

In this paper, we proposed a fast one-parameter relaxation (FOPR) method
with a scaled preconditioner for solving the saddle point problems, and then we
presented a formula for finding its optimal parameter. Both theoretical and com-
putational results showed that the FOPRmethods with the scaled preconditioner
Qs performs as well as the GSOR method. In addition, the FOPR method with
the scaled preconditioner Qs+ϵ performs better than other one or two parameter
relaxation methods with optimal parameters, and specifically it performs much
better than other methods for Cases III and IV of Q for which µmax > 4 (see
Tables 2 to 5). Hence, it may be concluded that the FOPR method with the
scaled preconditioner Qs+ϵ is strongly recommended for solving the saddle point
problems when µmax = ρ(Q−1BTA−1B) > 4.
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