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A NONLINEAR CONJUGATE GRADIENT METHOD AND ITS

GLOBAL CONVERGENCE ANALYSIS†
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Abstract. In this paper, we develop a new hybridization conjugate gra-

dient method for solving the unconstrained optimization problem. Un-
der mild assumptions, we get the sufficient descent property of the given
method. The global convergence of the given method is also presented
under the Wolfe-type line search and the general Wolfe line search. The

numerical results show that the method is also efficient.
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1. Introduction

We consider the unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f : Rn → R is a continuously differentiable function. The nonlinear
conjugate gradient method is very useful for solving (1.1), especially when n is
large. For any given x ∈ Rn, the nonlinear conjugate gradient method generates
xk, k = 1, 2, . . . , n, by the following recursive relation

xk+1 = xk + αkdk, (1.2)

dk =

{
−gk, k = 1,

−gk + βkdk−1, k ≥ 2,
(1.3)
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where gk = ∇f(xk) is the gradient of f at xk and βk is typically given by some
formulas (such as [1-5]).

βFR
k =

gTk gk
gTk−1gk−1

βPRP
k =

gTk (gk − gk−1)

gTk−1gk−1

βHS
k =

gTk (gk − gk−1)

(gk − gk−1)T dk−1
βDY
k =

gTk gk
dTk−1(gk − gk−1)

To achieve good computational performance and maintain the attractive fea-
ture of strong global convergence, in the past years, there exist many hybridiza-
tions of the basic conjugate gradient methods (see [6-10]). Based on the above
papers, in this paper, we present a new hybridization nonlinear conjugate gra-
dient method, where βk is given as

βk =


−gTk gk

|gTk−1dk−1|+
1

u
|gTk dk−1|

, 0 < u < 1, ∥gk∥2 < |gTk dk|,

0, otherwise.

(1.4)

αk is computed by the Wolfe-type line search, which is proposed in [11]

f(xk + αkdk)− f(xk) ≤ max{δαkg
T
k dk,−γα2

k∥dk∥2}, (1.5)

g(xk + αkdk)
T dk ≥ max{σgTk dk,−2σαk∥dk∥2}, (1.6)

where 0 < δ < σ < 1, 0 < γ < 1. Based on the hybridization of βk as given
by (1.4) we give the nonlinear conjugate gradient methods under the Wolfe-type
line search and the general Wolfe line search.

In Section 2, we give the Method 2.1 and prove the global convergence of the
proposed method with Wolfe-type line search. In Section 3, some discussions
and the numerical results of the Method 2.1 are also given.

2. Method 2.1 and its global convergence analysis

Now, we give the Method 2.1 for solving (1.1).
Method 2.1
Step 1. Choose initial point x0 ∈ Rn, ε ≥ 0, 0 < δ < σ < 1, u, γ ∈ (0, 1).
Step 2. Set d1 = −g1, k = 1, if ∥g1∥ = 0, then stop.
Step 3. Let xk+1 = xk + αkdk, compute αk by (1.5) and (1.6).
Step 4. Compute gk+1, if ∥gk+1∥ ≤ ε, then stop. Otherwise, go to next step.
Step 5. Compute βk+1 by (1.4) and generate dk+1 by (1.3).
Step 6. Set k = k + 1, go to step 3.

In order to establish the global convergence of the Method 2.1, we need the
following assumption, which are often used in the literature to analyze the global
convergence of nonlinear conjugate gradient methods.

Assumption 2.2
(i) The level set Ω = {x ∈ Rn|f(x) ≤ f(x1)} is bounded, i.e., there exists a
positive constant C such that ∥x∥ ≤ C, for all x ∈ Ω.
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(ii) In some neighborhood Ω of L, f is continuously differentiable and its gradient
is Lipchitz continuous, i.e., there exists a constant L > 0, such that

∥g(x)− g(y)∥ ≤ L∥x− y∥,
for all x,y ∈ Ω.

Theorem 2.1. Let the sequences {xk} and {dk} be generated by the method
(1.2), (1.3), and βk is computed by (1.4). Then, we have

gTk dk ≤ −(1− u)∥gk∥2, (2.1)

for all k ≥ 1, where u ∈ (0, 1).

Proof. If k = 1, from (1.3), we get

gkdk = −∥gk∥2.
Then, we can easily conclude (2.1). If k ≥ 2, multiplying (1.3) by gTk , from (1.4),
we get

gTk dk = −∥gk∥2 + βkg
T
k dk−1

≤ −∥gk∥2 + |βk| · |gTk dk−1|

≤ −∥gk∥2 +
∥gk∥2

|gTk−1dk−1|+
1

u
|gTk dk−1|

· |gTk dk−1|

≤ −∥gk∥2 +
∥gk∥2

1

u
|gTk dk−1|

· |gTk dk−1|

≤ −∥gk∥2 + u∥gk∥2

= −(1− u)∥gk∥2.
�

Theorem 2.2. Suppose that Assumption 2.2 holds. By the Method 2.1, we have
∞∑
k=1

(gTk dk)
2

∥dk∥2
< +∞. (2.2)

Proof. From Theorem 2.1 and Assumption (i), we can know that {f(xk)} is
bounded and monotonically decreasing, i.e., {f(xk)}, k = 1, 2, . . . , n, is conver-
gent series. By (1.6), we have that

dTk (gk+1 − gk) ≥ (σ − 1)gTk dk. (2.3)

From Assumption 2.2, we get

dTk (gk+1 − gk) ≤ Lαk∥dk∥2. (2.4)

So, from (2.3) and (2.4), we have

αk∥dk∥ ≥ 1− σ

L

(−gTk dk)

∥dk∥
. (2.5)
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Square both sides of (2.5), we have

α2
k∥dk∥2 ≥ (1− σ)2

L2

(gTk dk)
2

∥dk∥2
.

Therefore, by f(xk)− f(xk+1) ≥ γα2
k∥dk∥2, we get

∞∑
k=1

(gTk dk)
2

∥dk∥2
≤ L2

(1− σ)2

∞∑
k=1

α2
k∥dk∥2

≤ L2

γ(1− σ)2

∞∑
k=1

(f(xk)− f(xk+1)) .

According to the convergence of {f(xk)}, we can conclude that

∞∑
k=1

(gTk dk)
2

∥dk∥2
< +∞.

�

Remark 2.3. Suppose that Assumption 2.2 holds. By the Method 2.1, we know
that

∞∑
k=1

∥gk∥4

∥dk∥2
< +∞. (2.6)

Proof. From Theorem 2.1, we know that

gTk dk ≤ −(1− u)∥gk∥2, (2.7)

where u ∈ (0, 1).
Square both sides of (2.7), we have

(gTk dk)
2 ≥ (1− u)2∥gk∥4.

Divided both sides of the above inequation by ∥dk∥2 , we get

∥gk∥4

∥dk∥2
≤ (gTk dk)

2

(1− u)2∥dk∥2
.

From Theorem 2.2, we can conclude that

∞∑
k=1

∥gk∥4

∥dk∥2
< +∞.

�

Theorem 2.4. Suppose that Assumption 2.2 holds. If {xk} (k = 1, 2, . . . , n) is
generated by Method 2.1, we have

lim
k→∞

inf∥gk∥ = 0. (2.8)
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Proof. If (2.8) does not hold, there exists r̃ > 0, such that

∥gk∥ ≥ r̃, (2.9)

holds for all k ≥ 1. From (1.4), if ∥gk∥2 < |gTk dk|, we have

βk =
−gTk gk

|gTk−1dk−1|+
1

u
|gTk dk−1|

.

From (1.3) and (1.4), we know that

dk+1 + gk+1 = βk+1dk. (2.10)

Square both sides of (2.10) , we get

∥dk+1∥2 = (βk+1)
2∥dk∥2 − 2gTk+1dk+1 − ∥gk+1∥2.

Divided both sides of the above equation by (gTk+1dk+1)
2, we get

∥dk+1∥2

(gTk+1dk+1)2
=

(βk+1)
2∥dk∥2

(gTk+1dk+1)2
− 2

gTk+1dk+1
− ∥gk+1∥2

(gTk+1dk+1)2

=
(βk+1)

2∥dk∥2

(gTk+1dk+1)2
−

(
1

∥gk+1∥
+

∥gk+1∥
gTk+1dk+1

)2

+
1

∥gk+1∥2

≤ (βk+1)
2∥dk∥2

(gTk+1dk+1)2
+

1

∥gk+1∥2

≤
(gTk+1gk+1)

2∥dk∥2

(gTk dk)
2(gTk+1dk+1)2

+
1

∥gk+1∥2

≤ ∥dk∥2

(gTk dk)
2
+

1

∥gk+1∥2
.

By
∥d1∥2

(gT1 d1)
2
=

1

∥g1∥2
,

we have

∥dk∥2

(gTk dk)
2
≤

k∑
i=1

1

∥gi∥2
. (2.11)

By (2.9) and (2.11), we know that

∥dk∥2

(gTk dk)
2
≤ k

r̃2
.

Therefore, by
(gTk dk)

2

∥dk∥2
≥ r̃2

k
, we have

∑
k≥1

(gTk dk)
2

∥dk∥2
= +∞. (2.12)
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If ∥gk∥2 ≥ |gTk dk|, we get

βk = 0, dk = −gk.

We can easily conclude that ∑
k≥1

(gTk dk)
2

∥dk∥2
= +∞,

which leads to a contradiction with (2.2). This shows (2.8) holds. We finish the
proof of the theorem. �

3. Discussions of the Method 2.1 and Numerical Results

The line search in Method 2.1 can also given by the general Wolfe line search

f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk, (3.1)

σ1g
T
k dk ≤ gTk+1dk ≤ −σ2g

T
k dk, (3.2)

where 0 < σ1 ≤ σ2 < 1.

Theorem 3.1. Suppose that Assumption 2.2 holds. Consider the Method 2.1,
where αk satisfies (3.1), (3.2). Then, we have∑

k≥1

(gTk dk)
2

∥dk∥2
< +∞.

Proof. From (3.2), we get

(σ1 − 1)gTk dk ≤ (gk+1 − gk)
T dk,

(1− σ1)|gTk dk| ≤ ∥gk+1 − gk∥ · ∥dk∥ ≤ Lαk∥dk∥2.
So

αk ≥ (1− σ1)|gTk dk|
L∥dk∥2

. (3.3)

From (3.1), we have

f(xk)− f(xk+1) ≥ −δαkg
T
k dk.

By (3.3), we get

f(xk)− f(xk+1) ≥ δ
1− σ1

L
· (g

T
k dk)

2

∥dk∥2
.

That is ∑
k≥1

[f(xk)− f(xk+1)] ≥
∑
k≥1

δ
1− σ1

L

(gTk dk)
2

∥dk∥2
.

We have
(gTk dk)

2

∥dk∥2
< +∞.

�



A Nonlinear Conjugate Gradient Method and its Global Convergence Analysis 163

Discussion 3.1 By Theorem 3.1, we also can get the global convergence of the
Method 2.1 with (3.1), (3.2).

Discussion 3.2 If the line search in the Method 2.1 is given by the other
Wolfe-type line search, which is given in [12]

f(xk + αkdk)− f(xk) ≤ −γα2
k∥dk∥2,

g(xk + αkdk)
T dk ≥ −2σαk∥dk∥2,

the method is also globally convergent.

Discussion 3.3 If in the Method 2.1, βk is given as

βk =


−θ1gTk gk

1

θ2
|gTk−1dk−1|+

1

θ3
|gTk dk−1|

, 0 < θ1, θ2, θ3 < 1, θ1 + θ2 + θ3 = 1, ∥gk∥2 < |gTk dk|,

0, otherwise,

αk satisfies (1.5), (1.6) or (3.1), (3.2), we also can get the global convergence of
the Method 2.1.

Numerical Results 3.4
Now, we test the Method 2.1, where αk satisfing (1.5), (1.6) or (3.1), (3.2) by
using double precision versions of the unconstrained optimization problems in
the CUTE library [13].

For the Method 2.1, αk is computed by (1.5) and (1.6) with δ = 0.4 and
σ = 0.7 in the Table 3.1. αk is computed by (3.1) and (3.2) with σ1 = 0.5 and
σ2 = 0.6 in the Table 3.2.

The numerical results are given in the form of NI/NF/NG/g, where NI, NF,
NG denote the numbers of iterations, function evaluations, and gradient evalua-
tions and g denotes the finally gradient norm. Finally, all attempts to solve the
test problems were limited to reaching maximum of achieving a solution with
∥gk∥ ≤ 10−3.

Table 3.1

PROBLEM DIM NI/NF/NG/g
JENSAM 2 2/164/54/0
GAUSS 3 1/4/2/7.806334e-04
GULF 3 42/115/94/3.236456e-04
BOX 3 133/278/134/9.589702e-04
OSB2 11 4/155/56/4.218750e-04
PEN1 4 4/8/5/1.110815e-05
TRIG 3 36/7/37/7.273758e-04
TRIG 50 35/14/36/9.274977e-04
TRIG 100 26/10/27/8.383886e-04
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KOWOSB 4 109/4545/2042/9.897984e-04
IE 3 8/211/102/6.736650e-04
IE 50 9/213/101/5.091395e-04
IE 100 9/213/101/7.386004e-04
IE 200 9/213/101/9.148532e-04
IE 500 10/215/102/3.810671e-04

TRID 50 70/741/258/9.296880e-04
TRID 200 188/1446/305/9.335612e-04
LIN 2 1/2/2/5.117875e-16
LIN 50 1/2/2/3.140185e-15
LIN 500 1/2/2/4.468561e-14
LIN 1000 1/2/2/6.366875e-13

Table 3.2

PROBLEM DIM NI/NF/NG/g
ROSE 2 130/3061/959/9.428937e-04
GAUSS 3 3/107/48/5.070183e-04
GULF 3 21/1136/513/8.595130e-04

KOWOSB 4 109/5047/2178/9.868359e-04
ROSEX 8 165/2421/681/9.110545e-04
PEN1 2 3/111/55/9.909755e-04
PEN2 4 35/801/355/9.206275e-04

VARDIM 2 8/135/52/7.889590e-04
VARDIM 50 22/496/23/6.552673e-04

IE 3 9/217/109/5.867130e-04
IE 50 9/214/105/6.771816e-04
IE 100 9/213/105/5.703362e-04
IE 200 10/215/106/2.006254e-04
IE 500 10/215/106/3.500399e-04

TRID 50 126/1663/540/6.969663e-04
BAND 3 12/169/60/3.566964e-04
BAND 50 53/1102/404/8.178660e-04
BAND 100 24/346/112/7.547444e-04
BAND 200 24/346/113/8.209428e-04
LIN 2 1/2/2/5.117875e-16
LIN 50 1/2/2/3.140185e-15
LIN 500 1/2/2/4.468561e-14
LIN 1000 1/2/2/6.366875e-13
LIN1 10 26/576/55/9.240066e-04
LIN0 4 17/245/59/4.271362e-04
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