DOI QR코드

DOI QR Code

Evaluation of water holding property for applying a cosmetic moisturizer from oil palm trunk CNF

오일 팜 수간 유래 CNF (cellulose nanofibrils)의 화장품 보습제 적용을 위한 보습력 평가

  • Song, Woo-Yong (Department of Forest Products and Engineering, Chungbuk National University) ;
  • Shin, Soo-Jeong (Department of Forest Products and Engineering, Chungbuk National University)
  • Received : 2016.04.11
  • Accepted : 2016.04.19
  • Published : 2016.04.30

Abstract

Cellulose nanofibrils (CNF) was made from oil palm trunk (OPT) with soda-anthraquinone pulping, chlorine dioxide bleaching, carboxymethylation, followed by mechanical grinding. Size of this CNF was 16-40 nm of width confirmed by TEM. To evaluate CNF from OPT as cosmetics raw materials for moisturizing component, water holding properties was compared with hyaluronic acid and collagen. CNF from OPT had better water holding property than collagen or hyaluronic acid whether phenoxyethanol was added as antiseptic or without additive.

Keywords

References

  1. O'Sullivan, A. C., Cellulose: the structure slowly unravels. Cellulose, 4(3):173-207 (1997). https://doi.org/10.1023/A:1018431705579
  2. Maneerung, T., Tokura, S., and Rujiravanit, R., Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers, 72(1):43-51 (2008). https://doi.org/10.1016/j.carbpol.2007.07.025
  3. Sasakura, Y., Nakashima, K., Awazu, S., Matsuoka, T., Nakayama, A., Azuma, J. I., and Satoh, N., Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proceedings of the National Academy of Sciences of the United States of America, 102(42):15134-15139 (2005).
  4. Meinert, M. C., and Delmer, D. P., Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiology, 59(6):1088-1097 (1977). https://doi.org/10.1104/pp.59.6.1088
  5. Park, H. J., Han, J. S., Son, H. N., and Seo, Y. B., Study of cotton linter pre-treatment process for producing high quality regenerated fibers for fabrics. Journal of Korea TAPPI, 45(3):27-35 (2013).
  6. Turbak, A. F., Snyder, F. W., and Sandberg, K. R., Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science.: Applied Polymer Symposium, 37 (1983).
  7. Missoum, K., Belgacem, M. N., and Bras, J., Nanofibrillated cellulose surface modification: a review. Materials, 6(5):1745-1766 (2013). https://doi.org/10.3390/ma6051745
  8. Nechyporchuk, O., Pignon, F., and Belgacem, M. N., Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. Journal of Material Science, 50:531-541 (2015). https://doi.org/10.1007/s10853-014-8609-1
  9. Cervin, N. T., Andersson, L., Ng, J. B. S., Olin, P., Bergstrom, L., and Wagberg, L., Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules, 14(2):503-511 (2013). https://doi.org/10.1021/bm301755u
  10. Isogai, T., Saito, T., and Isogai, A., Wood cellulose nanofibrils prepared by TEMPO electro- mediated oxidation. Cellulose, 18(2):421-431 (2011). https://doi.org/10.1007/s10570-010-9484-9
  11. Naderi, A., Lindström, T., and Pettersson, T., The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose, 21(4):2357-2368 (2014). https://doi.org/10.1007/s10570-014-0329-9
  12. Aulin, C., Salazar-Alvarez, G., and Lindstrom, T., High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale, 4(20):6622-6628 (2012). https://doi.org/10.1039/c2nr31726e
  13. Ho, T. T., Zimmermann, T., Ohr, S., and Caseri, W. R., Composites of cationic nanofibrillated cellulose and layered silicates: water vapor barrier and mechanical properties. ACS Applied Materials & Interfaces, 4(9):4832-4840 (2012). https://doi.org/10.1021/am3011737
  14. Aulin, C., Gallstedt, M., and Lindstrom, T., Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose, 17(3):559-574 (2010). https://doi.org/10.1007/s10570-009-9393-y
  15. Stevanic, J. S., Bergstrom, E. M., Gatenholm, P., Berglund, L., and Salmen, L., Arabinoxylan/ nanofibrillated cellulose composite films. Journal of Materials Science, 47(18):6724-6732 (2012). https://doi.org/10.1007/s10853-012-6615-8
  16. Peng, Y., Gardner, D. J., and Han, Y., Drying cellulose nanofibrils: in search of a suitable method. Cellulose, 19(1):91-102 (2012). https://doi.org/10.1007/s10570-011-9630-z
  17. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J., Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7):3941-3994 (2011). https://doi.org/10.1039/c0cs00108b
  18. Kolakovic, R., Laaksonen, T., Peltonen, L., Laukkanen, A., and Hirvonen, J., Spraydried nanofibrillar cellulose microparticles for sustained drug release. International Journal of Pharmaceutics, 430(1):47-55 (2012). https://doi.org/10.1016/j.ijpharm.2012.03.031
  19. Cha, S. H., Lee, J. S., Kim, Y. S., Kim, D. U., Moon, J. C., and Park, K. P., Properties of fucoidan as raw materials of water-holding cream and cosmetics. Korean Chemical Engineering Research, 48(1):27-32 (2010).
  20. Sung, Y.-J., Lee, J.-W., Kim, S.-B., and Shin, S.-J., Comparison of the soda-anthraquinone pulping properties between imported eucalyptus mixture chips and domestic yellow poplar (Liriodendron tulipifera) chips, Journal of Korea TAPPI, 10(3):22-27 (2010).
  21. Mhd Ramle, S. F., Sulaiman, O., Hashim, R., Arai, T., Kosugi, A., Abe, H., and Mori, Y., Characterization of parenchyma and vascular bundle of oil palm trunk as function of storage time. Lignocellulose Journal, 1(1):33-44 (2012).
  22. Iwamoto, S., Nakagaito, A. N., and Yano, H., Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A, 89(2):461-466 (2007). https://doi.org/10.1007/s00339-007-4175-6
  23. Iwamoto, S., Nakagaito, A. N., Yano, H., and Nogi, M., Optically transparent composites reinforced with plant fiber-based nanofibers. Applied Physics A, 81(6):1109-1112 (2005). https://doi.org/10.1007/s00339-005-3316-z
  24. Alemdar, A., and Sain, M., Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls. Bioresource Technology, 99(6):1664-1671 (2008). https://doi.org/10.1016/j.biortech.2007.04.029
  25. Taniguchi, T., and Okamura, K., New films produced from microfibrillated natural fibres. Polymer International, 47(3):291-294 (1998). https://doi.org/10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1
  26. Yeh, A. I., Huang, Y. C., and Chen, S. H., Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydrate Polymers, 79(1):192-199 (2010). https://doi.org/10.1016/j.carbpol.2009.07.049
  27. Lee, S. H., Inoue, S., Teramoto, Y., and Endo, T., Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process II: effect of hot-compressed water treatment. Bioresource Technology, 101(24):9645-9649 (2010). https://doi.org/10.1016/j.biortech.2010.07.068
  28. Lee, S. H., Chang, F., Inoue, S., and Endo, T., Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresource Technology, 101(19):7218-7223 (2010). https://doi.org/10.1016/j.biortech.2010.04.069
  29. Connolly, P., Bloomfield, S. F., and Denyer, S. P., The use of impedance for preservative efficacy testing of pharmaceuticals and cosmetic products. Journal of Applied Bacteriology, 76(1):68-74 (1994). https://doi.org/10.1111/j.1365-2672.1994.tb04417.x