DOI QR코드

DOI QR Code

Feasibility Study on Tropospheric Attenuation Effect of Ku/V Band Signal for Korean Satellite Navigation System

  • Received : 2015.08.03
  • Accepted : 2015.10.14
  • Published : 2016.03.30

Abstract

For next generation global navigation satellite systems, new carrier frequencies in Ku/V band are expected to emerge as a promising alternative to the current frequency windows in L band as they get severely congestive. In the case of higher frequency bands, signal attenuation phenomenon through the atmosphere is significantly different from the L band signal propagation. In this paper, a fundamental investigation is carried out to explore the Ku/V band as a candidate frequency band for a new global satellite navigation carrier signal, wherein specific attention is given to the effects of the dominant attenuation factors through the tropospheric propagation path. For a specific application, a candidate orbit preliminarily designed for the Korean regional satellite navigation system is adapted. Simulation results summarize that the Ku band can provide a promising satellite navigation implementation considering the present satellite's power budget, while the V band still requires technical advances in satellite transceiver system implementations.

Keywords

References

  1. Thevenon, P., Bousquet, M., Macabiau, C., Grelier, T., Ries, L. and Roviras, D., "Regulatory Analysis of Potential Candidate Bands for the Modernization of GNSS Systems in 2015-2020", Proceedings of IEEE IWSSC, 2008, pp. 172-175.
  2. Hein G. W., Avila-Rodriguez, J. A., Wallner S., Eissfeller B., Isigler M. and Issler, J. L., "A vision on new frequencies, signals and concepts for future GNSS systems", Proceedings of ION GNSS 2007.
  3. Mateu, I., Boulanger, C., Issler, J. L., Ries, L., Avila-Rodriguez, J. A., Wallner, S., Kraus, T., Eissfeller, B., Mulassano, P., Caporate, M., Germaine, S., Guyomand, J. Y., Bastide, F., Godet, J., Hayes, D., Serant, D., Thevenon, P., Julien, O. and Hein, G., "Exploration of Possible GNSS Signals in S-band", Proceedings of 22nd International Meeting of the Satellite Division of The Institute of Navigation, Savannah, GA, September 22-25, 2009, pp. 1573-1587.
  4. Irsigler, M., Hein, G. W. and Schmitz-Peiffer, A., "Use of C-Band frequencies for satellite navigation: benefits and drawbacks", GPS Solutions, Vol. 8, No. 3, 2004, pp.119-139. https://doi.org/10.1007/s10291-004-0098-2
  5. FCC ONLINE TABLE OF FREQUENCY ALLOCATIONS, FEDERAL COMMUNICATIONS COMMISSION OFFICE OF ENGINEERING AND TECHNOLOGY, POLICY AND RULES DIVISION 47 C.F.R. $\S$ 2.106, Revised on April 16, 2013
  6. Liebe, H. J., "MPM - An atmospheric mm-wave propagation model", International Journal of Infrared and Millimeter Waves, Vol. 10, No. 6, 1989, pp. 631-650. https://doi.org/10.1007/BF01009565
  7. Schneider, T., "Link Budget Analysis for Terahertz Fixed Wireless Links", IEEE Tr. On Terahertz Science and Technology, Vol. 2, No. 2, 2012, pp. 250 - 256. https://doi.org/10.1109/TTHZ.2011.2182118
  8. Espeland, R. H., Violette, E. J. and Allen, K. C., "Atmospheric Channel Performance Measurements at 10 to 100 GHz", NTIA Technical Report TR-84-149, April 1984
  9. Dees, J. W., King, J. L. and Wiltse, J. C., "A millimeter wave propagation experiment from the ATS-E spacecraft", NASA Technical Report NASA-TM-X-60763, 1967 and presented at IEEE, Group On MICROWAVE THEORY AND TECH.; 18-21 MAR. 1968; NEW YORK
  10. Fugono, N., Yoshimura, K., & Hayashi, R., "Japan's Millimeter Wave Satellite Communication Program", IEEE Tr. On Communications, Vol. 27, No. 10, 1979, pp. 1381-1391. https://doi.org/10.1109/TCOM.1979.1094304
  11. Antes, J., Reichart, J., Lopez-Diaz, D., Tessmann, A., Poprawa, F., Kurz, F. and Kallfass, I., "System concept and implementation of a mmW wireless link providing data rates up to 25 Gbit/s", Proceedings of the IEEE COMCAS, Tel Aviv, Israel, 2011.
  12. Castanet, L., Lemorton, J., Konefal, T., Shukla, A. K., Watson, P. A. and Wrench, C. L., "Comparison of Various Methods for Combining Propagation Effects and Predicting Loss in Low-Availability Systems in the 20-50 GHz Frequency Range", Int'l. J. Satell. Commun., Vol. 19, Vol. 3, 2001, pp. 317-334. https://doi.org/10.1002/sat.703
  13. Propagation data and prediction methods required for the design of Earth-space telecommunication systems, Recommendation ITU-R P.618-11 (09/2013)
  14. Specific attenuation model for rain for use in prediction methods, Recommendation ITU-R P.838-3
  15. Attenuation by atmospheric gases, Recommendation ITU-R P.676-10 (09/2013)
  16. Attenuation due to clouds and fog, Recommendation ITU-R P.840-6 (09/2013)
  17. Ionospheric propagation data and prediction methods required for the design of satellite services and systems, Recommendation ITU-R P.531-12 (09/2013)
  18. Characteristics of precipitation for propagation modeling, Recommendation ITU-R P.837-6 (02/2012)
  19. Rain height model for prediction methods, ITU-R P.839-4 (09/2013)
  20. The radio refractive index: its formula and refractivity data, Recommendation ITU-R P.453-10 (02/2012)
  21. A general purpose wide-range terrestrial propagation model in the frequency range 30 MHz to 50 GHz, Recommendation ITU-R P.2001 (02/2012)
  22. Guide to the application of the propagation methods of Radiocommunication Study Group 3, Recommendation ITU-R P.1144-6 (02/2012)