DOI QR코드

DOI QR Code

질량 감소가 낙하산 시스템의 하강 고도 변화에 미치는 효과

Effects of Time-Varying Mass on the Dynamic Behavior of a Descending Parachute System

  • Jang, Woo-Young (Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Baek, Sang-Tae (Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Myong, Rho-Shin (Department of Aerospace and System Engineering and Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Jin, Yeon-Tae (Sam Yang Chemical)
  • 투고 : 2016.01.11
  • 심사 : 2016.03.17
  • 발행 : 2016.04.01

초록

시간에 따라 질량이 감소하는 낙하산 시스템의 궤적 및 낙하 시간 분석은 정밀한 투하가 요구되는 임무에 중요하므로 그 필요성이 더 커지고 있다. 본 연구에서는 질량 변동 물체인 조명탄을 투하하기 위한 십자형 낙하산 시스템의 동적 거동을 분석하는 연구를 수행하였다. 낙하산 시스템의 궤적을 분석하기 위해 유도된 상미분 형태의 운동방정식 시스템을 Runge-Kutta 수치기법을 적용하여 해석하였다. 그리고 동역학 방정식의 핵심적 입력정보인 십자형 낙하산과 조명탄의 항력 계수를 예측하기 위해 전산유체역학 해석을 수행하였다. 마지막으로 단순화된 대기교란 모델을 적용하여 풍향, 풍속에 따라 달라지는 낙하산 시스템 거동의 차이를 분석하였다.

Accurate prediction of the trajectory and time of a time-varying mass parachute system remains essential in the mission requiring a precision airdrop to the ground. In this study, we investigate the altitude-varying behavior of a cross-type parachute system designed to deliver a time-varying mass object like flare. The dynamics of the descending parachute system was analyzed based on the Runge-Kutta method of the ordinary differential system. The drag coefficients of the cross-type parachute and flare were calculated by a CFD code based on the incompressible Navier-Stokes equation. Finally, by using a simplified gust wind model in troposphere, the combined effects of gust wind and time-varying mass were examined in detail.

키워드

참고문헌

  1. Im, J. C., Kim, B. S., "A Wind Tunnel Study of Directional Control of Cruciform Parachute," Proceeding of the 2005 KSAS Fall Conference, 2005, pp. 157-160.
  2. Kim, H. M., Goo, B. J., Chea, H. G., Lee, D. H., "A Wind Tunnel Study of Aerodynamics Characteristics of Parachute," Proceeding of the 1993 KSAS Fall Conference, 1993, pp. 54-59.
  3. Je, S. U., Jung, S. G., Kwag, S. H., Myong, R. S., Cho, T. H., "A Numerical Study on Aerodynamics Characteristics of a Rotating Parachute in Steady Descending Motion," Journal of Korean Society of Computational Fluids Engineering, Vol. 11, No. 1, 2006, pp. 52-56.
  4. Oh, S. T., Park, J. G., Lee, J. G., Ahn, S. K., "An Experimental Study on Decelerating Parachutes," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 29, No. 2, 2001, pp. 110-116.
  5. Cockrell, D. J., The Aerodynamics of Parachutes, Advisory Group for Aerospace Research and Development, AGARD-AG-295, 1987.
  6. Knacke, T. W., Parachute Recovery Systems Design Manual, Para Publishing, 1992.
  7. Taylor, A. P., "An Investigation of The Apparent Mass of Parachutes under Post Inflation Dynamic Loading Through The Use of Fluid Structure Interaction Simulations," AIAA 2003-2104, 2003.
  8. Tezduyar, T., Osawa, Y., Stein, K., Benny, R., Kumar, V., McCune, J., "Numerical Methods for Computer Assisted Analysis of Parachute Mechanics," Proceedings of 8th International Conference on Numerical Methods in Continuum Mechanics, 2000.
  9. Stein, K., Benny, R., Tezduyar, T., Kalro, V., Potvin, J., Bretl, T., "Fluid-Structure Interaction Simulation of a Cross Parachute: Comparison of Numerical Prediction with Wind Tunnel Data," AIAA-99-1725, 1999.
  10. ANSYS V13 FLUENT Basic, TSNE, 2011.
  11. Lee, G. S., Numerical Methods for Engineers, Won-Hwa, 2009.
  12. Plate, E. J., Aerodynamic Characteristics of Atmospheric Boundary Layers, Argonne National Laboratory, 1971.
  13. Wilcox, D. C., Turbulence Modeling for CFD, 2nd Ed., DCW Industries, Inc., 1994.