TUNNEL & UNDERGROUND SPACE Vol. 26, No. 2, 2016, pp. 120-130 http://dx.doi.org/10.7474/TUS.2016.26.2.120

ISSN: 1225-1275(Print) ISSN: 2287-1748(Online)

국내 석회석 노천광산에 대한 Kuz-Ram 모델의 적용성에 관한 연구 이승중, 김병렬, 최성웅*, 진연호, 정민수, 민형동

A Study on Application of Kuz-Ram model to Domestic Open-pit Limestone Mine

Seung-Joong Lee, Byung-Ryeol Kim, Sung-Oong Choi*, Yeon-Ho Jin, Min-Su Jung, Hyung-Dong Min

Abstract Considering the applicability of Kuz-Ram model, which has been used extensively for predicting rock fragmentation size distribution by blasting, to domestic open-pit limestone mine, a total of 21 blasting tests have been executed at an open-pit limestone mine in eastern Gangwon of South Korea. A comparative analysis of field measured value and Kuz-Ram predicted value showed that there are a considerable amount of error in the predicted values regardless of application of various correction parameters for rock factor and uniformity factor; up to 56.45% in mean fragmentation size and 37.52% in uniformity index. Also the problem of applying different correction parameters has been derived even though a similar blasting pattern has been adopted for a same blasting bench. The authors therefore suggest that Kuz-Ram model needs to be modified for a proper application to domestic open-pit limestone mine.

Key words Kuz-Ram model, Rock fragmentation, Open-pit Limestone mine

초 록 노천광산에서 발파파쇄석의 입도예측에 널리 활용되고 있는 Kuz-Ram 모델의 국내 석회석 노천광산에 대한 적용성을 분석하기 위해, 강원도 동해지역 석회석 노천광산을 대상으로 총 21회의 현장 시험을 수행하였다. 현장시험결과와 Kuz-Ram 모델 예측의 비교 분석 결과, 평균 파쇄입도에서는 최대 56.45%, 균등계수에서는 최대 37.52%의 오차가 나타나는 등, 암석계수와 균등계수에 대한 다양한 보정요소를 제시함에도 불구하고 Kuz-Ram 모델의 예측값에는 상당한 수준의 오차가 발견되었다. 또한 동일한 벤치에서 유사한 발파패턴으로 시험발파를 수행했음에도 각기 다른 보정요소를 적용해야 하는 문제점도 도출되었다. 따라서 국내 노천광산의 발파패턴 및 암반조건과는 다른 경험값을 바탕으로 개발된 Kuz-Ram 모델의 국내 적용성 확대를 위해서는 반드시 해당 광산의 현장조건에 맞도록 수정, 보완되어야 할 것이다.

핵심어 Kuz-Ram 모델, 암석의 파쇄도, 석회석 노천광산

1. 서 론

노천광산에서 발파로 인해 발생되는 암석의 파쇄도는

Received: Apr. 15, 2016 Revised: Apr. 22, 2016 Accepted: Apr. 25, 2016 *Corresponding Author: Sung-Oong Choi Tel) +82332506253, Fax) +82332556253 E-Mail) choiso@kangwon.ac.kr Dept. of Resources Energy System Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Korea 적재, 운반, 1차 파쇄 등 전체 생산 공정에 영향을 미치 는 중요한 요소이다. 이러한 암석의 파쇄도는 해당 암 반의 강도 특성이나 절리 분포 특성 등 현장 특성을 고 려하여 인위적으로 제어할 수 있는 발파변수들을 조절 함으로써 현장 생산설비의 규격에 적합한 파쇄도를 얻 을 수 있다.

대상 광산에 적합한 파쇄도를 얻기 위해서는 시험발 파나 수치모델을 이용하여 발파패턴을 설계할 수 있다. 시험발파를 통하여 발파설계를 수행할 경우 많은 비용 과 시간이 소요되지만, 수치모델을 이용할 경우 측정 가능한 발파변수의 수치계산만으로 추정이 가능하기 때문에 비용과 시간 절감 차원에서 매우 유리하다.

이러한 이유로 국내외적으로 활발한 연구를 통하여 암석의 파쇄도를 제어할 수 있는 다양한 예측 모델이 개발되어 왔다. Langefors and Kihlström(1978)은 저항 선과 비장약량만을 고려하여 단순한 예측 모델을 제안 하였으며, McHugh(1983)과 Adam et al.(1985)는 모든 발파변수를 고려한 이론적 모델을 제안한 바 있다. 하지 만, 이 모델들은 너무 단순하거나 또는 너무 복잡하여 실 용적이지 못한 한계가 있다. 이외에도 현장 데이터를 기 반으로 다양한 예측 모델들이 개발되었지만(Kuznetsov, 1973; Larsson, 1974; Kou and Rustan, 1993; Cunningham, 1983, 1987, 2005; Choi et al., 2004), 그 중 Cunningham (1983)에 의해 개발된 Kuz-Ram 모델은 현장에서 측정 가능한 모든 발파변수를 고려하여 개발되었으며, 다른 모델보다 적용성이 우수하여 현재까지도 널리 활용되 고 있는 모델이다. Kuz-Ram 모델은 1983년에 처음 발 표된 이후, 20년 동안의 연구결과를 종합하여 2005년 에 최종적으로 수정된 모델이 발표되었다.

본 연구에서는 이러한 Kuz-Ram 모델의 국내 석회석 노천광산에 대한 적용성을 살펴보기 위해 2005년에 수 정된 Kuz-Ram 모델을 중심으로 Jin *et al.*(2014)가 강 원도 동해지역 석회석 노천광산에서 수행한 총 21회 현 장 시험발파 자료를 활용하여 평균파쇄입도 및 균등계 수 등을 비교 분석하고자 한다.

본 연구에서는 이러한 Kuz-Ram 모델의 국내 석회석 노천광산에 대한 적용성을 살펴보기 위해 2005년에 수 정된 Kuz-Ram 모델을 중심으로 Jin *et al.*(2014)가 강 원도 동해지역 석회석 노천광산에서 수행한 총 21회 현 장 시험발파 자료를 활용하여 평균파쇄입도 및 균등계 수 등을 비교 분석코자 한다.

2. Kuz-Ram 모델

Kuz-Ram 모델은 벤치높이, 공간격, 저항선, 비장약 량, 암반의 특성 등 노천 광산현장에서 측정 가능한 발 파변수들로부터 암석의 파쇄도를 예측하고 발파패턴을 수정 및 변경하기 위하여 Cunningham(1983)에 의해 제안되었다. Kuz-Ram 모델은 평균 파쇄입도(mean fragmentation size, X₅₀) 추정식과 균등계수(uniformity index, n) 추정식으로 구성된다. 균등계수는 Rosin-Rammler 식으로 표현되는 입도분포곡선의 기울기를 결정하며, 일반적으로 0.8 ~ 2.2 의 값을 갖는다(Rosin and Rammler, 1933). 균등계수 값이 작을수록 파쇄물의 입도가 작은 것부터 큰 것까지 고르게 분포하고 있음을 의미하고, 반대로 값이 클수록 파쇄물의 입도가 일정 크기에 집중 되어 나타난다.

Kuz-Ram 모델은 1983년에 처음 소개된 이후, 정성 적으로 분류되어 있던 평가 기준을 보다 공학적인 기준 으로 정량화하고, 초기 모델에서 반영하지 못한 발파변 수들을 고려하여 모델의 정확도를 향상시키고자 두 차 례 수정된 모델이 발표되었다(Cunningham, 1987; 2005). 최근 발표된 수정 모델은 2005년에 수정 및 보완된 모 델로서, 그동안 고려되지 않았던 뇌관의 지연시차를 고 려하기 위하여 평균 파쇄입도 추정식과 균등계수 추정 식에 지연시차와 관련된 함수식을 추가하였다. 그리고 평균 파쇄입도 추정식의 암석계수에 대한 보정계수 (*C*(*A*))와 균등계수 추정식에 대한 보정계수(*C*(*n*))를 각각 도입하여 현장 적용성을 향상시키고자 하였다.

2005년에 수정된 평균 파쇄입도 추정식은 식 (1)로 표현되며, 식 (2)~식 (5)의 보조 함수식으로 평균 파쇄 입도를 추정할 수 있다. Cunningham(2005)은 기본식 수정 이외에도 Table 1에 제시된 암석계수(A)에 대한 평가방법 중 절리 간격에 대한 평가기준을 세분화하고, 절리의 틈새 조건에 관한 평가기준을 도입하여 평가 항 목과 방법을 재구성하였다.

$$X_m = A \times A_t \times K^{-0.8} \times Q^{\frac{1}{6}} \times \left(\frac{115}{RWS}\right)^{\frac{19}{20}} \times C(A) \quad (1)$$

$$A = 0.06 \times (RMD + JF + RDI + HF)$$
⁽²⁾

$$\begin{split} A_t &= 0.66 \Big(\frac{T}{T_{\rm max}} \Big)^3 - 0.13 \Big(\frac{T}{T_{\rm max}} \Big)^2 - 1.58 \Big(\frac{T}{T_{\rm max}} \Big) + 2.1, \\ & \left(0 < \frac{T}{T_{\rm max}} < 1 \right) \end{split} \tag{3}$$

$$A_t = 0.9 + 0.1 \left(\frac{T}{T_{\max}} - 1 \right), \ \left(\frac{T}{T_{\max}} > 1 \right)$$
 (4)

$$T_{\max} = \frac{15.6}{C_x} B \tag{5}$$

여기서 X_m 은 평균 파쇄입도(cm), A는 암석계수, A_t 는 지연시차 함수, K는 비장약량, Q는 공당 장약량(kg), RWS는 사용 폭약의 상대 중량강도, C(A)는 암석계수 에 대한 보정계수(일반적으로 0.5~2.0의 값을 적용함), T는 적용 지연시차(ms), T_{max} 는 최대 파쇄를 위한 지연 시차(ms), C_x 는 종파속도(km/sec), B는 저항선(m)이다. 지연시차 함수(A_t)는 Bergmann *et al.*(1974)이 수행한 시험결과를 재분석하여 T/T_{max} 값의 범위에 따라 식 (3)과 식 (4)로 구분하여 적용하도록 제안하였다. T_{max}

Parame	ter	Description	Value
		Powdery/friable	10
RML)	Massive formation	50
		Vertically jointed	JF
		Tight joints	1.0
	JCF	Relaxed joints	1.5
		Gouge = filled joint	2.0
	JPS	Joint spacing < 0.1 m	10
		Joint spacing = 0.1~0.3 m	20
$(= JCF \times JPS)$		Joint spacing = $0.3 \text{ m} \sim 95\%$ to P	80
+ JPA)		Joint spacing $> P$	50
		$P = (B \times S)^{0.5}$	Р
		Dip out of face	40
	JPA	Strike out of face	30
		Dip into face	20
RDI		$RDI = 25 \times SG - 50$	RDI
		If $E < 50$	E/3
HF		If $E > 50$	UCS/5

Table 1. Modified rock factor (A) by Cunningham (2005)

RMD: Rock mass description, JF: Joint factor, JCF: Joint condition factor, JPS: Joint plane spacing, JPA: Joint plane angle, P: Reduced pattern(m), B: Burden(m), S: Spacing(m), RDI: Rock density influence, SG: Specific gravity of rock, HF: Hardness factor, E: Young's modulus of intact rock (GPa), UCS: Uniaxial compressive strength of intact rock (MPa).

는 최대 파쇄를 얻기 위한 지연시차로서 식 (4)로 표현 되며, 이 식에서 15.6 은 Bergmann *et al.*(1974)가 수행 한 시험결과의 압축응력파 속도(5.2 km/sec)와 시험에 서 도출된 저항선 m 당 최적 지연시차(3 ms/m)의 곱으 로 산정된 것이며 이를 scale factor로 활용한 것이다. 수정된 균등계수 추정식은 식 (6)과 같으며, 지연시차 와 관련된 함수식 식 (7)과 식 (8)의 보조 함수식으로부 터 균등계수를 계산할 수 있다.

$$n = n_s \sqrt{\left(2 - \frac{30B}{D}\right)} \sqrt{\left(\frac{1 + S/B}{2}\right)} \left(1 - \frac{E_d}{B}\right) \left(\frac{L}{H}\right)^{0.3} C(n) \quad (6)$$

$$n_s = 0.206 + \left(1 - \frac{R_s}{4}\right)^{0.8} \tag{7}$$

$$R_s = \frac{T_r}{T} = 6\frac{\sigma_t}{T} \tag{8}$$

여기서 n은 균등계수, n_s는 분산도 비율(scatter ratio) 에 의해 지배되는 균등계수, *B*는 저항선(m), *D*는 천공 경(mm), *S*는 공간격(m), *E*_d는 천공오차, *L*은 장약장 (m), H는 벤치의 높이(m), Cn)는 보정계수(일반적으로 0.5~2.0의 값을 적용함), R_s는 지연시차의 분산도 비율, T,은 지연시차의 분산도의 범위, T는 적용 지연시차의 시>
시차(ms), σ_i는 적용 지연시차 시>
신치(ms), σ_i는 적용 지연시차 시>
전구에서는 이상에서 살펴본 2005년에 수정된
Kuz-Ram 모델을 중심으로 국내 석회석 노천광산의 암
석 파쇄도 분석하고, 실측 결과와 비교분석하여 그 적용성을 검토하고자 한다.

3. Kuz-Ram 모델의 현장 적용성 검토

3.1 현장 데이터

본 연구에서는 Kuz-Ram 모델의 현장 적용성 검토를 위하여 Jin et al.(2014)가 수행한 현장 시험발파 결과를 활용하였다. Jin et al.(2014)가 수행한 현장 시험발파는 국내 최초로 정확한 초시를 구현할 수 있는 전자뇌관을 이용하여 지연시차 변화에 따른 암석의 파쇄도를 분석 하였으며, 2005년에 수정된 Kuz-Ram 모델에서 고려하 고 있는 모든 발파변수들이 조사되었기 때문에 현장 적 용성 검토를 위한 기초 자료로 활용하기에 적합하다. Jin et al.(2014)가 수행한 현장 시험발파는 쌍용자원

Fig. 1. Location of blasting tests in Donghae limestone mine

Before blasting test	
 Field measurement of joint distribution patterns Magnitude survey of test blasting bench 	
Blasting test	
- Drilling - Charging - Blasting	
After blasting test	
 Fragmentation analysis using image processing technique 	

Fig. 2. Process of field survey and blasting test

개발 동해사업소 SL200 구역에서 저항선 m당 1, 2, 3, 4, 5, 7, 10 ms의 지연시차로 각 3회씩 총 21회 수행되 었다(Fig. 1). 현장조사 및 시험발파는 Fig. 2와 같은 순 서로 수행되었으며, 시험발파에 적용된 발파패턴은 Table 2 와 같다. 시험발파에 사용된 화약류는 0.001%의 정밀도 를 갖는 전자뇌관과 내수성이 우수한 bulk emulsion (emulsion:ANFO = 7:3) 폭약이 사용되었다. 시험발파 벤치에 분포하는 절리군은 311~353°의 경사방향과 67 ~82°의 급경사를 갖는 절리군이 가장 우세하게 분포하 고 있으며, 본 연구지역의 석회석은 일축압축강도 82 MPa, 탄성계수 58.50 GPa 를 갖는 것으로 분석되었다. Table 3은 총 21회 현장조사 및 시험발파 결과를 정 리한 것이다. 영상처리기법(image analysis)으로 측정 된 평균 파쇄입도(X_{M50})는 29.89~51.28 cm의 범위 내 에 분포하며, 분석된 균등계수(n_A)는 1.308~1.813의 범위를 나타내는 것으로 분석되었다.

3.2 Kuz-Ram 모델에 의한 암석의 파쇄도 분석

앞서 정리된 총 21회 현장조사 자료를 이용하여 Kuz-Ram 모델에 의한 평균 파쇄입도와 균등계수를 분석하 고, 파쇄도 분석을 수행하였다. 평균 파쇄입도 분석을 위하여 식 (2)와 Table 2로부터 암석계수(A)에 대한 평 가를 수행한 결과 4.93~5.96의 범위를 나타내는 것으 로 확인되었으며, 총 21회 시험발파가 동일한 시험발파 벤치에서 연속적으로 수행되었기 때문에 암반조건이나 절리분포 패턴이 유사한 특징을 나타냈다(Table 4).

식 (1)~식 (5)로부터 추정된 평균 파쇄입도(X_{A50})은 Table 5와 같다. 암석계수에 대한 보정계수(*C*(*A*))는 Kuz-Ram 모델에서 0.5~2.0의 범위 내의 값을 적용하 도록 제시하고 있지만, 적용값의 판단근거나 기준 지표 가 없기 때문에 보정치가 부여되지 않은 일반적인 결괏 값을 산출하고자 모든 시험발파에 대하여 1로 가정하여 계산하였다. *X*_{A50}은 10회차 시험발파에서 18.60 cm로 최솟값을 나타냈으며, 15회차 시험발파에서 41.69 cm 로 최댓값을 나타내었다.

Table 6은 식 (6)~식 (8)로부터 산정된 균등계수 (n_{κ})

Blast No.	D	В	S	Н	SD	DL	SL	L	HN	C_{total}	V_{total}	K	Т
1	102	4.0	4.9	17.0	3.0	20.0	5.5	14.5	9	1,332.9	2,998.8	0.444	4
2	102	3.9	4.8	16.0	3.0	19.0	5.5	13.5	9	1,241.0	2,695.7	0.460	8
3	102	4.0	4.7	16.0	3.0	19.0	5.5	13.5	9	1,241.0	2,707.2	0.458	12
4	102	3.8	4.9	16.5	3.0	19.5	5.5	14.0	9	1,287.0	2,765.1	0.465	16
5	102	4.1	5.0	17.0	3.0	20.0	5.5	14.5	9	1,332.9	3,136.5	0.425	20
6	102	3.9	4.9	16.0	3.0	19.0	5.5	13.5	9	1,241.0	2,751.8	0.451	28
7	102	3.7	4.7	16.0	3.0	19.0	5.5	13.5	9	1,241.0	2,504.2	0.496	40
8	102	4.0	5.0	17.0	3.0	20.0	5.5	14.5	9	1,332.9	3,060.0	0.436	4
9	102	3.7	4.7	16.0	3.0	19.0	5.5	13.5	9	1,241.0	2,504.2	0.496	8
10	102	3.6	4.8	16.0	3.0	19.0	5.5	13.5	9	1,241.0	2,488.3	0.499	12
11	102	4.1	4.9	16.4	3.0	19.4	5.5	13.9	9	1,277.8	2,965.3	0.431	16
12	102	3.8	4.8	15.0	3.0	18.0	5.5	12.5	9	1,149.1	2,462.4	0.467	20
13	102	4.2	4.8	16.8	3.0	19.8	5.5	14.3	9	1,314.6	3,048.2	0.431	28
14	102	3.9	4.9	16.0	3.0	19.0	5.5	13.5	9	1,241.0	2,751.8	0.451	40
15	102	4.1	4.8	15.0	3.0	18.0	5.5	12.5	9	1,149.1	2,656.8	0.433	4
16	102	4.0	4.9	15.0	3.0	18.0	5.5	12.5	9	1,149.1	2,646.0	0.434	8
17	102	4.0	4.6	14.0	3.0	17.0	5.5	11.5	9	1,057.2	2,318.4	0.456	12
18	102	4.2	4.8	14.0	3.0	17.0	5.5	11.5	9	1,057.2	2,540.2	0.416	16
19	102	4.0	4.9	14.0	3.0	17.0	5.5	11.5	9	1,057.2	2,469.6	0.428	20
20	102	4.0	4.7	12.0	3.0	15.0	5.5	9.5	9	873.3	2,030.4	0.430	28
21	102	3.9	4.9	14.0	3.0	17.0	5.5	11.5	9	1,057.2	2,407.9	0.439	40

Table 2. Applied blasting pattern

D: Hole diameter (mm), *B*: Burden (m), *S*: Spacing (m), *H*: Height (m), *SD*: Sub-drilling (m), *DL*: Drilling length (m), *SL*: Stemming length (m), *L*: Charge length (m), *HN*: Number of holes, C_{total} : Total charge weight (kg) V_{total} : Total rock volume (m³), *K*: Powder factor (kg/m³), *T*: Delay time (ms).

Table 3. Joint distribution patterns and results of image processing

Blast	Delay	Joint o	listribution patterns	(set-1)	Results of image processing			
No.	time (ms)	Spacing (m)	Dip (°)	Dip direction (°)	X_{M50}	n_A		
1	4	0.15	82	317	40.01	1.682		
2	8	0.17	80	318	39.77	1.656		
3	12	0.15	61	321	31.80	1.467		
4	16	0.14	80	311	39.07	1.611		
5	20	0.13	82	312	51.28	1.481		
6	28	0.17	77	258	36.00	1.308		
7	40	0.20	62	237	39.11	1.382		
8	4	0.17	61	237	31.04	1.576		
9	8	0.16	71	353	39.97	1.522		
10	12	0.14	71	351	39.92	1.530		
11	16	0.16	77	330	36.63	1.509		
12	20	0.17	74	321	29.89	1.435		
13	28	0.17	75	320	36.06	1.659		
14	40	0.53	72	325	37.68	1.371		
15	4	0.28	72	330	44.83	1.467		
16	8	0.58	76	322	37.03	1.474		
17	12	0.30	67	327	44.50	1.437		
18	16	0.32	80	53	41.75	1.813		
19	20	0.58	79	325	35.36	1.333		
20	28	0.42	76	320	39.12	1.401		
21	40	0.38	37	249	33.95	1.573		

 X_{M50} : Measured X_{50} (cm), n_A : Analyzed n (uniformity index).

Blast	I	ntact roc	k		Jo	int		D1(D	ma			001	UD	4
No.	SG	E	UCS	J_s	J_D	J_{DD}	F_{DD}	RMD	JPS	JPA	JF	RDI	HF	A
1	2.74	58.50	82.00	0.15	82	317	224	48.75	12.50	30	48.75	18.50	16.40	5.02
2	2.74	58.50	82.00	0.17	80	318	224	50.25	13.50	30	50.25	18.50	16.40	5.11
3	2.74	58.50	82.00	0.15	61	321	218	48.75	12.50	30	48.75	18.50	16.40	5.02
4	2.74	58.50	82.00	0.14	80	311	220	48.00	12.00	30	48.00	18.50	16.40	4.97
5	2.74	58.50	82.00	0.13	82	312	220	47.25	11.50	30	47.25	18.50	16.40	4.93
6	2.74	58.50	82.00	0.17	77	258	218	50.25	13.50	30	50.25	18.50	16.40	5.11
7	2.74	58.50	82.00	0.20	62	237	210	52.50	15.00	30	52.50	18.50	16.40	5.24
8	2.74	58.50	82.00	0.17	61	237	210	50.25	13.50	30	50.25	18.50	16.40	5.11
9	2.74	58.50	82.00	0.16	71	353	230	49.50	13.00	30	49.50	18.50	16.40	5.06
10	2.74	58.50	82.00	0.14	71	351	243	48.00	12.00	30	48.00	18.50	16.40	4.97
11	2.74	58.50	82.00	0.16	77	330	225	49.50	13.00	30	49.50	18.50	16.40	5.06
12	2.74	58.50	82.00	0.17	74	321	230	50.25	13.50	30	50.25	18.50	16.40	5.11
13	2.74	58.50	82.00	0.17	75	320	220	50.25	13.50	30	50.25	18.50	16.40	5.11
14	2.74	58.50	82.00	0.53	72	325	225	64.50	23.00	30	64.50	18.50	16.40	5.96
15	2.74	58.50	82.00	0.28	72	330	200	58.50	19.00	30	58.50	18.50	16.40	5.60
16	2.74	58.50	82.00	0.58	76	322	210	64.09	22.73	30	64.09	18.50	16.40	5.94
17	2.74	58.50	82.00	0.30	67	327	202	60.00	20.00	30	60.00	18.50	16.40	5.69
18	2.74	58.50	82.00	0.32	80	53	225	60.00	20.00	30	60.00	18.50	16.40	5.69
19	2.74	58.50	82.00	0.58	79	325	224	64.50	23.00	30	64.50	18.50	16.40	5.96
20	2.74	58.50	82.00	0.42	76	320	218	62.05	21.36	30	62.05	18.50	16.40	5.82
21	2.74	58.50	82.00	0.38	37	249	218	60.00	20.00	30	60.00	18.50	16.40	5.69

Table 4. Estimated rock factor (A) by Kuz-Ram model ('05)

SG: Specific gravity of rock, E: Young's modulus of intact rock (GPa), UCS: Uniaxial compressive strength of intact rock (MPa), J_S : Joint spacing (cm), J_D : Joint dip (°), J_{DD} : Joint dip direction (°), F_{DD} : Face dip direction (°), RMD: Rock mass description, JPS: Joint plane spacing, JPA: Joint plane angle, JF: Joint factor, RDI: Rock density influence, HF: Hardness factor, A: Rock factor.

Table 5. Estima	ated results	of	X_{50}	by	Kuz-Ram	model	('0	5))
-----------------	--------------	----	----------	----	---------	-------	-----	----	---

Blast	<i>T</i> / D		Kuz-Ram model											
No.		A	Т	C_x	В	T _{max}	A_t	K	Q	RWS	C(A)	X_{K50}		
1	1.00	5.02	4	4.87	4.0	12.81	1.61	0.444	148	1.045	1	37.19		
2	2.05	5.11	8	4.87	3.9	12.49	1.21	0.460	138	1.045	1	27.22		
3	3.00	5.02	12	4.87	4.0	12.81	1.05	0.458	138	1.045	1	23.28		
4	4.21	4.97	16	4.87	3.8	12.17	0.93	0.465	143	1.045	1	20.38		
5	4.88	4.93	20	4.87	4.1	13.13	0.95	0.425	148	1.045	1	22.33		
6	7.18	5.11	28	4.87	3.9	12.49	1.02	0.451	138	1.045	1	23.46		
7	10.81	5.24	40	4.87	3.7	11.85	1.14	0.496	138	1.045	1	24.80		
8	1.00	5.11	4	4.87	4.0	12.81	1.61	0.436	148	1.045	1	38.47		
9	2.16	5.06	8	4.87	3.7	11.85	1.18	0.496	138	1.045	1	24.79		
10	3.33	4.97	12	4.87	3.6	11.53	0.90	0.499	138	1.045	1	18.60		
11	3.90	5.06	16	4.87	4.1	13.13	0.92	0.431	142	1.045	1	21.81		
12	5.26	5.11	20	4.87	3.8	12.17	0.96	0.467	128	1.045	1	21.22		
13	6.67	5.11	28	4.87	4.2	13.45	1.01	0.431	146	1.045	1	24.16		
14	10.26	5.96	40	4.87	3.9	12.49	1.12	0.451	138	1.045	1	29.95		
15	0.98	5.60	4	4.87	4.1	13.13	1.63	0.433	128	1.045	1	41.69		
16	2.00	5.94	8	4.87	4.0	12.81	1.22	0.434	128	1.045	1	33.15		
17	3.00	5.69	12	4.87	4.0	12.81	1.05	0.456	117	1.045	1	25.83		
18	3.81	5.69	16	4.87	4.2	13.45	0.92	0.416	117	1.045	1	24.36		
19	5.00	5.96	20	4.87	4.0	12.81	0.96	0.428	117	1.045	1	25.95		
20	7.00	5.82	28	4.87	4.0	12.81	1.02	0.430	97	1.045	1	26.02		
21	10.26	5.69	40	4.87	3.9	12.49	1.12	0.439	117	1.045	1	28.45		

T/B: Delay time per burden(ms/m), A: Rock factor, T: Delay time(ms), C_x : Longitudinal velocity(km/sec), B: Burden(m), T_{max} : Delay time for maximum fragmentation(ms), A_t : Timing factor, K: Powder factor(kg/m³), Q: Charge weight per hole(kg), RWS: Relative weight strength, C(A): Correction factor to rock factor, X_{K50} : Estimated X_{50} by Kuz-Ram model(cm).

Blast	<i>T</i> / D	Kuz-Ram model											
No.		Т	σ_t	R_s	n_s	В	D	S	E_d	L	H	C(n)	n_K
1	1.00	4	0.004	0.006	1.205	4.0	102	4.9	0.01	14.5	17.0	1	1.097
2	2.05	8	0.008	0.006	1.205	3.9	102	4.8	0.01	13.5	16.0	1	1.114
3	3.00	12	0.012	0.006	1.205	4.0	102	4.7	0.01	13.5	16.0	1	1.081
4	4.21	16	0.016	0.006	1.205	3.8	102	4.9	0.01	14.0	16.5	1	1.150
5	4.88	20	0.020	0.006	1.205	4.1	102	5.0	0.01	14.5	17.0	1	1.076
6	7.18	28	0.028	0.006	1.205	3.9	102	4.9	0.01	13.5	16.0	1	1.120
7	10.81	40	0.040	0.006	1.205	3.7	102	4.7	0.01	13.5	16.0	1	1.162
8	1.00	4	0.004	0.006	1.205	4.0	102	5.0	0.01	14.5	17.0	1	1.103
9	2.16	8	0.008	0.006	1.205	3.7	102	4.7	0.01	13.5	16.0	1	1.162
10	3.33	12	0.012	0.006	1.205	3.6	102	4.8	0.01	13.5	16.0	1	1.196
11	3.90	16	0.016	0.006	1.205	4.1	102	4.9	0.01	13.9	16.4	1	1.068
12	5.26	20	0.020	0.006	1.205	3.8	102	4.8	0.01	12.5	15.0	1	1.137
13	6.67	28	0.028	0.006	1.205	4.2	102	4.8	0.01	14.3	16.8	1	1.037
14	10.26	40	0.040	0.006	1.205	3.9	102	4.9	0.01	13.5	16.0	1	1.120
15	0.98	4	0.004	0.006	1.205	4.1	102	4.8	0.01	12.5	15.0	1	1.056
16	2.00	8	0.008	0.006	1.205	4.0	102	4.9	0.01	12.5	15.0	1	1.089
17	3.00	12	0.012	0.006	1.205	4.0	102	4.6	0.01	11.5	14.0	1	1.066
18	3.81	16	0.016	0.006	1.205	4.2	102	4.8	0.01	11.5	14.0	1	1.026
19	5.00	20	0.020	0.006	1.205	4.0	102	4.9	0.01	11.5	14.0	1	1.084
20	7.00	28	0.028	0.006	1.205	4.0	102	4.7	0.01	9.5	12.0	1	1.060
21	10.26	40	0.040	0.006	1.205	3.9	102	4.9	0.01	11.5	14.0	1	1.111

Table 6. Estimated results of n by Kuz-Ram model ('05)

T/B: Delay time per burden(ms/m), T: Delay time(ms), σ_t : Standard deviation of initiation system, R_s : Scatter ratio, n_s : Uniformity index governed by the scatter ratio, B: Burden(m), D: Hole diameter(mm), S: Spacing(m), E_d : Drilling accuracy, L: Charge length(m), H: Height(m), C(n): Correction factor to uniformity index, n_K : Analyzed uniformity index by Kuz-Ram model.

결괏값들을 정리한 것이다. 균등계수에 대한 보정계수 (*C*(*n*))는 앞서 언급한 바와 같이 모든 시험발파에 대하 여 1로 가정하여 계산하였다. *n_K*는 18회차 시험발파에 서 1.026으로 최솟값을 나타냈으며, 10회차 시험발파에 서 1.196으로 최댓값을 나타내었다.

3.3 Kuz-Ram 모델에 의해 추정된 결과와 현장에서 측정된 결과와의 비교

Kuz-Ram 모델의 국내 현장 적용성 검토를 위하여 총 21회 시험발파 결과에 대해 실측된 결괏값들과 Kuz-Ram 모델에 의해 추정된 결괏값들을 비교분석하였다(Table 7).

 X_{M50} 과 X_{K50} 은 5회차 시험발파에서 28.95 cm의 차 이로 56.45%의 가장 큰 오차를 나타낸 반면, 15회차 시 험발파에서 3.14 cm의 차이로 7.01%의 가장 작은 오차 를 나타냈다. 한편, n_A 과 n_K 는 13회차 시험발파에서 0.622의 차이로 37.52%의 가장 큰 오차를 나타낸 반면, 6회차 시험발파에서 0.188의 차이로 14.37%의 가장 작 은 오차를 나타냈다.

 Fig. 3은 7단계의 지연시차별 각 3회씩 수행된 시험

 의 X_{M50}과 X_{K50}을 적용된 지연시차 변화와 함께 도시

한 것이다. 전체 결과 중 5회차 시험발파의 X_{M50}은 51.28 cm로 가장 큰 값을 나타내어 전반적인 경향을 크 게 벗어나는 것으로 확인되었다. 이에 대한 원인을 분 석하기 위하여 절리면의 방향성 및 상태, 발파조건, 날 씨 등 발파결과에 영향을 미칠 수 있는 모든 조건을 검 토한 결과, 유사한 조건에서 수행된 12회차와 19회차 시험발파의 X_{M50} 값들과의 차이를 발생시킬만한 특이 사항은 확인되지 않았다. 따라서 지연시차와 평균 파쇄 입도의 상관성 분석에서 전반적인 경향을 왜곡시킬 수 있기 때문에, 전체 경향분석에서 이를 제외시켰다. 회귀 분석결과, X_{M50}과 X_{K50}은 지연시차 24 ms에서 가장 작 은 파쇄입도를 갖는 것으로 분석되었으며, 지연시차 24 ms를 기준으로 지연시차가 증가 또는 감소할수록 X_{M50} 과 X_{K50} 의 값이 증가하는 경향을 나타내고 있다. X_{M50} 과 X_{K50}은 지연시차 변화에 따라 유사한 경향을 나타내 고 있지만, 동일한 지연시차 조건에서 최소 2.82 cm, 최 대 28.95 cm 정도의 차이를 나타내고 있다.

Fig. 4는 n_A 와 n_K 를 적용된 지연시차 변화와 함께 도 시한 것이다. n_A 는 지연시차가 증가함에 따라 감소하는 경향을 나타내지만, n_K 는 지연시차의 변화에 민감하게

터널과 지하공간

Blast	Delay	Measu	red (a)	Kuz-R	am (b)	Diffe ((a)-(rence b))/(a)	Correction factor		
No.	(ms)	X_{M50}	n_A	X_{K50}	n_K	$(\%) X_{50}$	n (%)	C(A)	C(n)	
1	4	40.01	1.682	37.19	1.097	7.06	34.80	1.076	1.534	
2	8	39.77	1.656	27.22	1.114	31.55	32.72	1.461	1.486	
3	12	31.80	1.467	23.28	1.081	26.78	26.34	1.366	1.358	
4	16	39.07	1.611	20.38	1.150	47.85	28.65	1.917	1.402	
5	20	51.28	1.481	22.33	1.076	56.45	27.38	2.296	1.377	
6	28	36.00	1.308	23.46	1.120	34.84	14.37	1.535	1.168	
7	40	39.11	1.382	24.80	1.162	36.59	15.95	1.577	1.190	
8	4	31.04	1.576	38.47	1.103	-23.93	30.03	0.807	1.429	
9	8	39.97	1.522	24.79	1.162	37.99	23.69	1.613	1.311	
10	12	39.92	1.530	18.60	1.196	53.40	21.80	2.146	1.279	
11	16	36.63	1.509	21.81	1.068	40.46	29.24	1.679	1.413	
12	20	29.89	1.435	21.22	1.137	29.01	20.78	1.409	1.262	
13	28	36.06	1.659	24.16	1.037	32.99	37.52	1.492	1.601	
14	40	37.68	1.371	29.95	1.120	20.51	18.29	1.258	1.224	
15	4	44.83	1.467	41.69	1.056	7.01	27.99	1.075	1.389	
16	8	37.03	1.474	33.15	1.089	10.48	26.12	1.117	1.354	
17	12	44.50	1.437	25.83	1.066	41.96	25.82	1.723	1.348	
18	16	41.75	1.813	24.36	1.026	41.66	43.43	1.714	1.768	
19	20	35.36	1.333	25.95	1.084	26.61	18.65	1.363	1.229	
20	28	39.12	1.401	26.02	1.060	33.49	24.31	1.504	1.321	
21	40	33.95	1.573	28.45	1.111	16.21	29.37	1.193	1.416	

Table 7. Difference between measured results and estimated results by Kuz-Ram model ('05)

 X_{M50} : Measured X_{50} (cm), X_{K50} : Estimated X_{50} by Kuz-Ram model(cm), n_A : Analyzed n (uniformity index), n_K : Estimated n by Kuz-Ram model, C(A): Correction factor to rock factor, C(n): Correction factor to uniformity index.

Fig. 3. Measured X_{50} and estimated X_{50} by Kuz-Ram model (Data in dotted circle has been ignored in regression analysis because it is singular in comparison with the other ones.)

Fig. 4. Analyzed n and estimated n by Kuz-Ram model

128

반응하지 않는 것을 확인할 수 있었다.

측정값과 Kuz-Ram 모델에 의해 추정된 결괏값의 차 이로부터 암석계수에 대한 보정계수와 균등계수에 대 한 보정계수를 분석해 본 결과, 암석계수에 대한 보정 계수(C(A))는 0.807~2.296, 균등계수에 대한 보정계 수(C(n))는 1.168~1.601의 범위를 갖는 것으로 나타 났으며, 이 두 계수를 Kuz-Ram 모델의 결괏값에 곱해 야 측정된 결과와 일치하게 된다. Kuz-Ram 모델에서 두 보정계수는 0.5~2.0의 값을 적용하는 것으로 제시되 었지만, Table 7에 정리된 바와 같이, C(A)의 경우 이 제시 범위를 약 0.3 정도 초과하는 것으로 확인되었다. 이상의 결과로부터 확인할 수 있듯이, 동일한 벤치에 서도 각기 다른 보정계수를 적용해야 측정값과 추정값 이 일치하게 된다. 즉, 동일한 벤치임에도 불구하고, 암 석계수에 대한 보정계수의 적용값이 달라진다는 것은 해당 벤치의 암반조건이 다양하게 변화되었음을 의미한 다. 동일한 현장이라면, 암석계수의 보정계수는 암반조 건이 급변하는 특수한 상황을 제외하고, 유사한 값이 적 용되어야 할 것이다. 이로부터 확인할 수 있듯이, Kuz-Ram 모델에 의해 추정된 결과는 본 광산에서 수행된 시 험발파의 결과와 잘 부합하지 않는 것으로 판단된다. 이 는 Kuz-Ram 모델의 기반이 된 현장 데이터의 특수성 즉, 암반조건, 사용폭약의 종류, 천공오차, 발파패턴의 차이 등으로 인해 발생될 수 있는 오차로 판단된다.

4. 고찰 및 토의

Kuz-Ram 모델은 개발된 이후 20년 넘게 다양한 현 장에서 그 적용성을 높이고자 수정되어 왔으며, 암석계 수에 대한 보정계수(*C*(*A*))와 균등계수에 대한 보정계 수(*C*(*n*))를 도입하여 다양한 현장 특성을 반영할 수 있 도록 모델의 유연성을 두고 있다. 하지만 이 보정계수 들의 적용범위는 0.5~2.0으로서, 적용 기준이나 판단 근거에 있어 명확성이 결여되어 있는 관계로 사용자의 주관적인 판단이 포함될 수 있는 부적확성이 염려될 수 있으며 또한 다수의 시험발파를 통해 보정계수를 결정 해야 하는 번거로움이 제기될 수 있다.

한편, 앞서 비교분석결과로부터 확인할 수 있듯이, 본 연구에서 분석한 Kuz-Ram 모델에 의한 결괏값은 지연 시차 변화에 따라 실측값과 유사한 경향을 나타내지만, 2.296 배의 차이를 나타낸다. 이러한 차이는 암반 내부 의 소규모 공동이나 가스압 등 현실적으로 고려할 수 없는 요인들에 의해 발생된 차이로 생각해 볼 수도 있 지만, Kuz-Ram 모델의 기반이 된 현장 데이터의 발파 패턴과 본 연구에서 수행한 시험 발파패턴이 다르기 때 문에 결괏값의 차이가 나타난 것으로 판단된다. 즉, Kuz-Ram 모델의 기반이 된 현장 데이터는 국내 노천광산의 발파패턴과는 다르게 대규모 다열 발파패턴(multi row blasting pattern)으로 수행된 국외 현장 데이터이므로, 단열 발파패턴(single row blasting pattern)을 수행하는 국내 광산 환경에 대한 적용성이 떨어지기 때문인 것으 로 판단된다.

단열 발파패턴의 경우, 발파공의 기폭순서를 2자유면 에서 3자유면으로 확대시키기 유리한 방향으로 유도하 기 때문에, 암반 파쇄를 위한 발파력이 일렬로 배치된 발파공 사이에 국한되어 발생된다. 반면, 다열 발파패턴 의 경우, 발파공을 직사각 패턴(rectangular pattern) 또 는 비틀림 패턴(staggered pattern)으로 배치하고 열마 다 순차적으로 발파하거나, 3자유면의 효과를 극대화 할 수 있도록 열 간의 기폭순서를 조절하여 확대 발파 (expanded pattern)를 수행한다. 따라서 암반 파쇄를 위 한 발파력은 공 간격뿐만 아니라 열과 열 사이의 저항 선과 지연시차에도 영향을 받기 때문에, 이에 따라 파 쇄도는 다르게 나타난다. 이러한 이유로 단열 발파패턴 은 다열 발파패턴보다 파쇄도가 좋지 않을 뿐만 아니라, 동일한 파쇄도를 얻기 위해서는 더 높은 비장약량 값을 적용해야하기 때문에, 대규모 노천광산에서는 다열 발 파패턴을 선호하는 것이 일반적이다(Rout, 2007). 이러 한 점에서 볼 때, Kuz-Ram 모델의 기반이 된 현장 데 이터를 얻기 위한 발파패턴은 현재 국내 노천광산에서 적용하는 발파패턴과 다르기 때문에, Kuz-Ram 모델을 그대로 국내 현장에 적용한다면 추정하고자 하는 결괏 값과 실측값 간의 오차가 발생될 수 있을 뿐만 아니라, 매 발파 시 보정계수를 달리 적용해야하는 문제가 발생 될 수 있다. 따라서 Kuz-Ram 모델을 국내 광산현장에 적용할 경우, 오차를 최소화 할 수 있도록 수정 보완할 필요가 있다.

5. 결 론

본 연구에서는 국내 석회석 노천광산에서 수행된 총 21회 현장 시험발파 결과를 이용하여 2005년에 수정된 Kuz-Ram 모델의 현장 적용성을 검토하였다. 이를 위하 여 Jin *et al.*(2014)이 수행한 현장 시험결과 자료를 재 검토하였으며, 이를 현장 적용성 검토를 위한 기초자료 로 활용하였다. 본 연구에서 분석한 내용을 정리하면 다음과 같다.

 Kuz-Ram 모델의 국내 현장 적용성 검토를 위하여 활용된 데이터는 총 21회 현장 시험발파가 수행된 결과 자료로서, X_{M50} 은 28.89~51.28 cm, $n_A = 1.308$ ~1.813의 범위를 나타낸다. 이에 대한 Kuz-Ram 모 델에 의한 추정값 중 X_{K50} 은 18.60~41.69 cm, $n_K =$ 1.026~1.196의 범위를 갖는 것으로 분석되었다. X_{M50} 과 X_{K50} 는 최대 28.95 cm의 차이로 56.45%의 오차를 나타내었으며, n_A 와 n_K 은 최대 0.622의 차 이로 37.52%의 오차를 나타내었다.

- 지연시차 변화에 따른 X_{M50}과 X_{K50}의 변화양상을 살펴보기 위하여 회귀분석을 수행한 결과, 동일한 지연시차에서 두 결괏값의 차이는 최소 2.82 cm, 최 대 28.95 cm의 차이를 나타냈지만, 지연시차 24 ms 에서 최소 평균 파쇄입도를 나타내는 유사한 경향을 보였다.
- 3. 측정값과 Kuz-Ram 모텔에 의해 추정된 결괏값의 차이로부터 C(A)와 C(n)을 역산해 본 결과, C(A) 는 0.807~2.296, C(n)은 1.168~1.601의 범위를 갖 는 것으로 분석되었으며, C(A)는 0.5~2.0의 적용 제한 범위에서 약 0.3정도 초과하는 것이 확인되었 다. 이로부터 확인할 수 있듯이 동일한 벤치임에도 불구하고 C(A)의 값을 달리 적용해야 한다는 것은 암반조건이 다양하게 변화되었음을 의미하는 바, Kuz-Ram 모델에서 제안하고 있는 일반적인 경향과 다르게 분석되었다.
- 4. 이상의 결과로부터 확인할 수 있듯이, Kuz-Ram 모 델에 의해 추정된 결과는 본 대상 광산의 시험발파 결과와 잘 부합하지 않는 것으로 확인되었다. 이는 Kuz-Ram 모델의 기반이 된 현장 데이터의 특수성 즉, 암반 조건, 사용폭약의 종류, 천공오차, 발파패턴 등의 차이로 인하여 발생된 오차로 판단된다. 이 오 차발생 요인들 중 발파패턴은 암반 내부로 전파되는 발파력의 유도 양상을 변화시킬 수 있기 때문에, 암 석의 파쇄도와 직결되는 요인이다. Kuz-Ram 모델 의 기반이 된 현장 데이터는 국외 대규모 노천광산 에서 다열 발파패턴으로 수행된 자료인 반면, 본 연 구에서 활용한 국내 현장 데이터는 소규모 단열 발 파패턴으로 수행된 자료이기 때문에, 발파패턴에 기 인한 오차가 국내 현장 적용성을 저하시키는 요인으 로 작용했다고 판단된다.

이상에서 살펴본 바와 같이, Kuz-Ram 모델의 국내 노천광산에 대한 현장 적용성 측면에서 볼 때, Kuz-Ram 모델을 그대로 사용하기보다는 국내 광산 환경과 해당 광산의 현장조건 등을 고려하여 수정 및 보완할 필요가 있으며, 이로부터 해당 광산의 최적의 파쇄도를 얻기 위한 파쇄도 예측 모델을 개발하고, 체계적인 기준 지 표를 확립한다면 해당 광산의 생산 효율성을 증대시킬 수 있을 것으로 기대된다.

사 사

본 연구는 산업통상자원부 에너지기술개발사업 "국 내 석회석광 적용 자동차 경량화 광물 원료 등 미래 자 원화 기술 실증화 연구 중 선택적 채광을 위한 발파기 술 개발(과제번호: 2013T100100021) 사업의 지원을 받아 수행하였으며, 현장 실험에 도움을 주신 쌍용자원 개발(주) 정준덕 상무님 이하 동해사업소 관계자분들께 감사드립니다.

References

- Adams, T.F., Demuth, R.B., Keller, C.F., Margolin, L.G. and Nichols, B.D., 1985, Simulation of dynamic rock breakage with the SHALE code, Fragmentation by blasting(1st edition), Society for experimental mechanics, 147-157.
- Bergmann, O.R., Wu, F.C. and Edl, J.W., 1974, Model rock blasting measures effect of delays and hole patterns on rock fragmentation, Engineering and mining journal, 124-127.
- Choi, Y.K., Lee, C.I., Lee, J.S. and Kim, J.S., 2004, Analysis of in-situ rock conditions for fragmentation prediction in bench blasting, Tunnel and underground space, Vol. 14, No. 5, 353-362.
- Cunningham, C.V., 1983, The Kuz-Ram model for prediction of fragmentation from blasting, Proceedings of the 1st international symposium on rock fragmentation by blasting, Lulea, Sweden, Vol. 2, 439-453.
- Cunningham, C.V., 1987, Fragmentation estimation and the Kuz-Ram model-four years on, Proceedings of the 2nd international symposium on rock fragmentation by blasting, Colorado, U.S.A., 475-487.
- Cunningham, C.V., 2005, The Kuz-Ram fragmentation model-20 years on, 2005 European federation of explosives engineers, Brighton conference proceeding, Brighton, U.K., 201-210.
- Jin, Y.H., Min, H.D., Park, Y.S., Heo, E.H., Choi, S.O. and Lee S.J., 2014, A study on rock fragmentation variation by delay time, Journal of Korean society of explosive & blasting Engineering, Vol. 32, No. 3, 1-9.
- Kou, S. and Rustan, A., 1993, Computerized design and result prediction of bench blasting, Proceedings of the 4th international symposium on rock fragmentation by blasting, Vienna, Austria, 263-271.
- Kuznetsov, V.M., 1973, The mean diameter of fragments formed by blasting rock, Journal of mining science, Vol. 9, 144-148.

- 10. Langefors, U. and Kihlström, B., 1978, The modern technique of rock blasting, Halstead press book, 3rd edition, New York, U.S.A., 45-138.
- 11. Larsson, B., 1974, Blasting of low and high benches, Swedish rock blasting committee, Stockholm, Sweden, 247-271.
- 12. McHugh, S., 1983, Computational simulations of dynamically induced fracture and fragmentation, Proceedings of the

1st international symposium on rock fragmentation by blasting, Lulea, Sweden, Vol. 1, 407-418.

- 13. Rout, M., 2007, Optimization of blasting parameters in opencast mines, Ph. D. thesis, National institute of technology Rourkela, Odisha, India, 23-29.
- 14. Rosin, R. and Rammler, E., 1933, Laws governing the fineness of coal, Journal of the Institute of Fuels, Vol. 6, 29-36.

이 승 중

2007년 강원대학교 공과대학 지구시스템 공학과 공학사 2009년 강원대학교 공과대학 지구시스템 공학과 공학석사 2016년 강원대학교 공과대학 지구시스템 공학과 공학박사

Tel: 02-880-9307 E-mail: lsj3601@snu.ac.kr 현재 서울대학교 에너지자원신기술연 구소 박사후연구원

김 병 렬

2012년 강원대학교 공과대학 에너지·자 원공학과 공학사 2014년 강원대학교 공과대학 에너지·자 원공학과 공학석사

Tel: 033-255-6253 E-mail: shingcore@kangwon.ac.kr 현재 강원대학교 공과대학 자원에너지 시스템공학과 박사과정

최성 웅

1987년 서울대학교 공과대학 자원공학과 공학사 1989년 서울대학교 대학원 자원공학과 공학석사 1994년 서울대학교 대학원 자원공학과 공학박사

Tel: 033-255-6253 E-mail: choiso@kangwon.ac.kr 현재 강원대학교 공과대학 자원에너지 시스템공학과 교수

공학사 공학과 공학석사

Tel: 033-576-0593 E-mail: minsu.j@hanwha.com 현재 ㈜한화 D&B기술팀 팀장

진 연 호

1998년 전남대학교 공과대학 자원공학과 공학사 2000년 전남대학교 공과대학 자원공학과 공학석사 2012년 전남대학교 공과대학 자원공학과 공학박사

Tel: 033-576-0593 E-mail: jyh0924@hanwha.com 현재 ㈜한화 D&B기술팀 차장

민 형 동

1984년 성균관대학교 공과대학 금속공 학과 공학사

정 민 수 1993년 한양대학교 공과대학 자원공학과 2010년 한양대학교 공과대학 지구시스템

¹³⁰