DOI QR코드

DOI QR Code

Reactivated Timings of Yangsan Fault in the Sangcheon-ri Area, Korea

상천리 일대 양산단층의 재활동 연대

  • Song, Yungoo (Department of Earth System Sciences, Yonsei University) ;
  • Park, Changyun (Department of Earth System Sciences, Yonsei University) ;
  • Sim, Ho (Department of Earth System Sciences, Yonsei University) ;
  • Choi, Woohyun (Department of Earth System Sciences, Yonsei University) ;
  • Son, Moon (Department of Geological Sciences, Pusan National University) ;
  • Khulganakhuu, Chuluunbaatar (Department of Earth System Sciences, Yonsei University)
  • 송윤구 (연세대학교 지구시스템과학과) ;
  • 박창윤 (연세대학교 지구시스템과학과) ;
  • 심호 (연세대학교 지구시스템과학과) ;
  • 최우현 (연세대학교 지구시스템과학과) ;
  • 손문 (부산대학교 지질환경과학과) ;
  • Received : 2016.04.12
  • Accepted : 2016.04.27
  • Published : 2016.04.28

Abstract

Here we firstly present that a timing of reactivated event of Yangsan fault, the major fault in the southeastern Korean Peninsula, by using combined approaches of the optimized illite-polytype quantification, the K-Ar age-dating, and the recently developed illite-age-analysis (IAA) approach for the fault clays from Sangcheon-ri area of Yangsan main fault line. Two chronological record of brittle fault-activation event at about 41.5~43.5 and 50.7 Ma were determined from 3 fault gouges suggesting a crucial reactivation time-scheme. Furthermore, the regional processes that drive tectonics to form and reactivate the Yangsan fault may be explained from the chronological analysis for additional sites along the Yangsan fault.

본 연구에서는 한반도 남동부지역 주요단층인 양산단층대 주단층이 지나는 울산시 상천리일대 3개 단층점토 지점의 각 3개 입도분리 시료에 대한, 일라이트 폴리타입 정량분석법, K-Ar 연대측정, 일라이트 혼합연대해석법(IAA)법 적용 및 해석을 통해 단층 재활동 절대연대를 결정하였다. 연대측정 및 해석결과, 상천리지점 단층시료에서 41.5~43.5 및 50.7 Ma의 2회 천부단층 재활동연대를 결정하였다. 본 연구결과는 양산단층에 대한 최초의 단층 재활동연대를 직접적인 방법으로 결정한 것으로, 양산단층 생성시기가 이 시기 이전이었으며, 최소 2회 이상의 재활동이 있었음을 의미한다. 양산단층대의 단층점토에 대한 추가적인 연대측정이 이루어질 경우 양산단층의 재활동 시간대를 구체화할 수 있을 것으로 생각된다.

Keywords

References

  1. Alt, J.C. and Jiang, W.-T. (1991) Hydrothermally precipitated mixed-layer illite-smectite in recent massive sulfide deposits from the sea floor. Geology, v.19, p.570-573. https://doi.org/10.1130/0091-7613(1991)019<0570:HPMLIS>2.3.CO;2
  2. Cain, J.S, Evans, J.P. and Foster, C.B. (1996) Fault zone architecture and permeability structure. Geology, v.24, p.1125-1128.
  3. Choi, J.-H., Yang, S.-J. and Kim, Y.-S.(2009) Fault zone classification and strutural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea. Journal of the Geological Society of Korea, v.45, p.9-28.
  4. Chung, D., Song, Y., Kang, I.-M. and Park, C.-Y. (2013) Optimization of Illite Polytype Quantification Method. Economic and Environmental Geology, v.46, p.1-9(in Korean with English abstract). https://doi.org/10.9719/EEG.2013.46.1.1
  5. Chung, D., Song, Y., Park, C.-Y., Kang, I.-M., Choi, S.-J. and Khulganakhuu, C. (2014) Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period. Economic and Environmental Geology, v.47, p.29-38(in Korean with English abstract). https://doi.org/10.9719/EEG.2014.47.1.29
  6. Duvall, A.R., Clark, M.K., van der Pluijm, B.A. and Li, C. (2011) Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth and Planetary Science Letters, v.304, p.520-526. https://doi.org/10.1016/j.epsl.2011.02.028
  7. Grathoff, G.H. and Moore, D.M. (1996) Illite polytype quantification using Wildfire calculated X-ray diffraction patterns. Clays and Clay Minerals, v.44, p.835-842. https://doi.org/10.1346/CCMN.1996.0440615
  8. Grathoff, G.H., Moore, D.M., Hay, R.L. and Wemmer, K. (2001) Origin of illite in the lower Paleozoic of the Illinois basin; evidence for brine migration. Geological Society of America Bulletin, v.113, p.1092-1104. https://doi.org/10.1130/0016-7606(2001)113<1092:OOIITL>2.0.CO;2
  9. Haines, S.H. and van der Pluijm, B.A. (2008) Clay quantification and Ar-Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatan detachment fault, Sonora, Mexico. J. Structural Geology, v.30, p.525-538. https://doi.org/10.1016/j.jsg.2007.11.012
  10. Inoue, A., Utada. M. and Wakita, K. (1992) Smectite-toillite conversion in natural hydrothermal systems. Applied Clay Science, v.7, p.131-145. https://doi.org/10.1016/0169-1317(92)90035-L
  11. Itaya, T., Nagao, K., Inoue, K., Honjou, Y., Okada, T. and Ogata, A. (1991) Argon isotopic analysis by newly developed mass spectrometric system for K-Ar dating. Mineralogical Journal, v.15, p.203-221. https://doi.org/10.2465/minerj.15.203
  12. Khulganakhuu C., Song, Y., Chung, D., Park, C., Choi, S.-J., Kang, I.-M. and Yi, K. (2015) Reactivated Timings of Inje Fault since the Mesozoic Era. Economic and Environmental Geology, v.48, p.41-49(in Korean with English abstract). https://doi.org/10.9719/EEG.2015.48.1.41
  13. KIGAM (2012) Active Fault Map and Seismic Harzard Map, KIGAM report (NEMA-자연-2009-24), KIGAM, 899p.
  14. Kim, Y.H. and Lee, K.H.(1987) Astudy on the structure of Yangsan fault in the southern part of Kyeonju. Journal of the Korean Institute of mineral and mining engineers, v.20, p.247-260.
  15. Kim, Y.S. and Park, J.-Y.(2006) Cenozoic deformation history of the area around Yangnam-Yangbuk, SE korea and its tectonic sinificance. Journal of Asian Earth Sciences, v.26, p.1-20. https://doi.org/10.1016/j.jseaes.2004.08.008
  16. Kuwahara, Y., Uehara, S. and Aoki, Y. (1998) Surface microtopography of lath-shaped hydrothermal illite by tapping-modeTM‚ and contact-mode AFM. Clays and Clay Minerals, v.46, p.574-582. https://doi.org/10.1346/CCMN.1998.0460511
  17. Kuwahara, Y., Uehara, S. and Aoki, Y. (2001) Atomic Force Microscopy study of hydrothermal illite in Izumiyama pottery stone from Arita, Saga prefecture, Japan. Clays and Clay Minerals, v.49, p.300-309. https://doi.org/10.1346/CCMN.2001.0490404
  18. Kyung, J.B. and Lee, K.H.(2006) Actine fault study of the Yangsan fauly system and Ulsan fault system, southeastern part of the Korean Peninsula. Journal of the Korean Geophysical Society, v.9, p.219-230.
  19. Lee, K.H. and Na, S.H. (1983) A study of microearthquake activity of the Yangsan fault. Journal of the Geological Society of Korea. v.19, p.127-135.
  20. Lee, K.H., Jeong, B.G., Kim, Y.H. and Yang, S.J. (1984) A geophysical study of Yangsan fault area. Journal of the Geophysical Society of Korea. v.20, p.222-240.
  21. Lee, K.H., Lee, K.H., Jeong, B.G. and Kim, Y.H. (1985) A geophysical study of Yangsan fault area(II). Journal of the Geophysical Society of Korea. v.21, p.79-89.
  22. Park, C., Song, Y., Chi, S.J., Kang, I.-M, Yi, K. and Chung, D. (2013) U-Pb(SHRIMP) and K-Ar Age Dating of Intrusive Rocks and Skarn Minerals at the W-Skarn in Weondong Mine. Journal of the Mineralogical Society of Korea, v.26, p.161-174. https://doi.org/10.9727/jmsk.2013.26.3.161
  23. Pevear, D.R. (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Kharaka, Y.K. and Maest, A.S. (eds.) Water-Rock interaction. Balkema, Rotterdam, p.1251-1254.
  24. Pevear, D.R. (1999) Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, v.96 n.7, p.3440-3446.
  25. Rahl, J.M., Haines, S.H. and van der Pluijm, B.A. (2011) Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth and Planetary Science Letters, v.307, p.180-190. https://doi.org/10.1016/j.epsl.2011.04.036
  26. Reynolds, R.C.Jr. (1994) WILDFIRE: a computer program for the calculation of three dimensional X-ray diffraction patterns of mica polytypes and their disordered variation. 8 Brook Rd.
  27. Schleicher, A.M., Warr, L.N., Kober, B., Laverret, E. and Clauer, N. (2006) Episodic mineralization of hydrothermal illite in the Soultz-sous-Forts granite (Upper Rhine Graben, France). Contributions to Mineralogy and Petrology, v.152, p.349-364. https://doi.org/10.1007/s00410-006-0110-7
  28. Schleicher, A.M., van der Pluijm, B.A. and Warr, L.N. (2010) Nanocoatings of clay and creep of the San Andreas fault at Perkfield, California. Geology, v.38, p.667-670. https://doi.org/10.1130/G31091.1
  29. Solum, J.G., van der Pluijm, B.A. and Peacor, D.R. (2005) Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. Journal of Structural Geology, v.27, p.1563-1576. https://doi.org/10.1016/j.jsg.2005.05.002
  30. Song, Y., Chung, D., Choi, S.-J., Kang, I.-M., Park, C., Itaya, T. and Yi, K. (2014) K-Ar illite dating to constrain multiple events in shallow crustal rocks: Implications for the Late Phanerozoic evolution of NE Asia. Journal of Asian Earth Sciences, v.95, p.313-322. https://doi.org/10.1016/j.jseaes.2014.05.018
  31. Srodon, J. and Eberl, D.D. (1984) Illite. In Bailey, S.W. (ed.) Micas, Reviews in Mineralogy. Mineralogical Society of America, Washington DC. 13, p.495-544.
  32. van der Pluijm, B.A., Hall, C.M., Vrolijk, P.J., Pevear, D.R., and Covey, M.C. (2001) The dating of shallow faults in the Earth's crust. Nature, v.412, p.172-175. https://doi.org/10.1038/35084053
  33. van der Pluijm, B.A., Vrolijk, P.J., Pevear, D.R., Hall, C.M. and Solum, J.G. (2006) Fault dating in the Canadian Rocky Mountains; Evidence for late Cretaceous and early Eocene orogenic pulse. Geology, v.34, p.837-840. https://doi.org/10.1130/G22610.1
  34. Vrolijk, P. and van der Pluijm, B.A. (1999) Clay gouge. Journal of Structural Geology, v.21, p.1039-1048. https://doi.org/10.1016/S0191-8141(99)00103-0
  35. Ylagan, R.F., Pevear, D.R. and Vrolijk, P.J. (2000) Discussion of "Extracting K-Ar ages from shales: a theoretical test". Clay Minerals, v.35 p.599-604. https://doi.org/10.1180/000985500546918

Cited by

  1. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies 2017, https://doi.org/10.1016/j.jseaes.2017.08.002