DOI QR코드

DOI QR Code

Enhanced Expression of TREK-1 Is Related with Chronic Constriction Injury of Neuropathic Pain Mouse Model in Dorsal Root Ganglion

  • Han, Hyo Jo (Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University) ;
  • Lee, Seung Wook (Division of Natural Science, Ajou University) ;
  • Kim, Gyu-Tae (Departments of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Kim, Eun-Jin (Departments of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Kwon, Byeonghun (Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University) ;
  • Kang, Dawon (Departments of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Kim, Hyun Jeong (Department of Dental Anesthesiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Seo, Kwang-Suk (Department of Dental Anesthesiology and Dental Research Institute, School of Dentistry, Seoul National University)
  • Received : 2016.02.18
  • Accepted : 2016.03.31
  • Published : 2016.05.01

Abstract

Neuropathic pain is a complex state showing increased pain response with dysfunctional inhibitory neurotransmission. The TREK family, one of the two pore domain $K^+$ (K2P) channel subgroups were focused among various mechanisms of neuropathic pain. These channels influence neuronal excitability and are thought to be related in mechano/thermosensation. However, only a little is known about the expression and role of TREK-1 and TREK-2, in neuropathic pain. It is performed to know whether TREK-1 and/or 2 are positively related in dorsal root ganglion (DRG) of a mouse neuropathic pain model, the chronic constriction injury (CCI) model. Following this purpose, Reverse Transcription Polymerase Chain Reaction (RT-PCR) and western blot analyses were performed using mouse DRG of CCI model and compared to the sham surgery group. Immunofluorescence staining of isolectin-B4 (IB4) and TREK were performed. Electrophysiological recordings of single channel currents were analyzed to obtain the information about the channel. Interactions with known TREK activators were tested to confirm the expression. While both TREK-1 and TREK-2 mRNA were significantly overexpressed in DRG of CCI mice, only TREK-1 showed significant increase (~9 fold) in western blot analysis. The TREK-1-like channel recorded in DRG neurons of the CCI mouse showed similar current-voltage relationship and conductance to TREK-1. It was easily activated by low pH solution (pH 6.3), negative pressure, and riluzole. Immunofluorescence images showed the expression of TREK-1 was stronger compared to TREK-2 on IB4 positive neurons. These results suggest that modulation of the TREK-1 channel may have beneficial analgesic effects in neuropathic pain patients.

Keywords

References

  1. Acosta, C., Djouhri, L., Watkins, R., Berry, C., Bromage, K. and Lawson, S. N. (2014) TREK2 expressed selectively in IB4-binding Cfiber nociceptors hyperpolarizes their membrane potentials and limits spontaneous pain. J. Neurosci. 34, 1494-1509. https://doi.org/10.1523/JNEUROSCI.4528-13.2014
  2. Alloui, A., Zimmermann, K., Mamet, J., Duprat, F., Noel, J., Chemin, J., Guy, N., Blondeau, N., Volley, N., Rubat-Coudert, C., Borsotto, M., Romey, G., Heurteaux, C., Reeh, P., Eschalier, A. and Lazdunski, M. (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J. 25, 2368-2376. https://doi.org/10.1038/sj.emboj.7601116
  3. Bennett, G. J. and Xie, Y. K. (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87-107. https://doi.org/10.1016/0304-3959(88)90209-6
  4. Campbell, J. N. and Meyer, R. A. (2006) Mechanisms of neuropathic pain. Neuron 52, 77-92. https://doi.org/10.1016/j.neuron.2006.09.021
  5. Decosterd, I. and Woolf, C. J. (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149-158. https://doi.org/10.1016/S0304-3959(00)00276-1
  6. Devilliers, M., Busserolles, J., Lolignier, S., Deval, E., Pereira, V., Alloui, A., Christin, M., Mazet, B., Delmas, P., Noel, J., Lazdunski, M. and Eschalier, A. (2013) Activation of TREK-1 by morphine results in analgesia without adverse side effects. Nat. Commun. 4, 2941. https://doi.org/10.1038/ncomms3941
  7. Duprat, F., Lesage, F., Patel. A. J., Fink, M., Romey, G. and Lazdunski, M. (2000) The neuroprotective agent riluzole activates the two P domain K+ channels TREK-1 and TRAAK. Mol. Pharmacol. 57, 906-912.
  8. Fang, X., Djouhri, L., McMullan, S., Berry, C., Waxman, S. G., Okuse, K. and Lawson, S. N. (2006) Intense isolectin-B4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression. J. Neurosci. 26, 7281-7292. https://doi.org/10.1523/JNEUROSCI.1072-06.2006
  9. Franks, N. P. and Honore, E. (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol. Sci. 25, 601-608. https://doi.org/10.1016/j.tips.2004.09.003
  10. Gardener, M. J., Johnson, I. T., Burnham, M. P., Edwards, G., Heagerty, A. M. and Weston, A. H. (2004) Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries. Br. J. Pharmacol. 142, 192-202. https://doi.org/10.1038/sj.bjp.0705691
  11. Gold, M. S., Weinreich, D., Kim, C. S., Wang, R., Treanor, J., Porreca, F. and Lai, J. (2003) Redistribution of Nav1.8 in uninjured axons enables neuropathic pain. J. Neurosci. 23, 158-166. https://doi.org/10.1523/JNEUROSCI.23-01-00158.2003
  12. Haiyan, W., Yuxiang, L., Linglu, D., Yaqiong, X., Shaojv, J., Juan, D., Lin, M., Juan, L., Ru, Z., Xiaoliang, H., Tao, S. and Jianqiang, Y. (2013) Antinociceptive effects of oxymatrine from Sophora flavescens, through regulation of NR2B-containing NMDA receptor-ERK/ CREB signaling in a mice model of neuropathic pain. Phytomedicine 20, 1039-1045. https://doi.org/10.1016/j.phymed.2013.04.012
  13. Heurteaux, C., Guy, N., Laigle, C., Blondeau, N., Duprat, F., Mazzuca, M., Lang-Lazdunski, L., Widmann, C., Zanzouri, M., Romey, G. and Lanzdunski, M. (2004) TREK-1, a $K^+$ channel involved in neuroprotection and general anesthesia. EMBO J. 23, 2684-2695. https://doi.org/10.1038/sj.emboj.7600234
  14. Honore, E. (2007) The neuronal background $K_{2p}$ channels: focus on TREK1. Nat. Rev. Neurosci. 8, 251-261
  15. Huang, D. and Yu, B. (2008) Recent advance and possible future in TREK-2: a two-pore potassium channel may involved in the process of NPP, brain ischemia and memory impairment. Med. Hypotheses 70, 618-624. https://doi.org/10.1016/j.mehy.2007.06.016
  16. Kang, D., Choe, C. and Kim, D. (2005) Thermosensitivity of the twopore domain K+ channels TREK-2 and TRAAK. J. Physiol. 564, 103-116. https://doi.org/10.1113/jphysiol.2004.081059
  17. Kim, E. J., Kang, D. and Han, J. (2011) Baicalein and wogonin are activators of rat TREK-2 two-pore domain K+ channel. Acta Physiol. (Oxf) 202, 185-192. https://doi.org/10.1111/j.1748-1716.2011.02263.x
  18. Kim, S. H. and Chung, J. M. (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50, 355-363. https://doi.org/10.1016/0304-3959(92)90041-9
  19. La, J. H. and Gebhart, G. F. (2011) Colitis decreases mechanosensitive K2P channel expression and function in mouse colon sensory neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G165-G174. https://doi.org/10.1152/ajpgi.00417.2010
  20. Lee, J. Y., Shin, T. J., Choi, J. M., Seo. K. S., Kim, H. J., Yoon, T. G., Lee, Y. S., Han, H., Chung, H. J., Oh, Y., Jung, S. J. and Shin, K. J. (2013) Antinociceptive curcuminoid, KMS4034, effects on inflammatory and neuropathic pain likely via modulating TRPV1 in mice. Br. J. Anaesth. 111, 667-672. https://doi.org/10.1093/bja/aet176
  21. Lee, M. J., Shin, T. J., Lee, J. E., Choo, H., Koh, H. Y., Chung, H. J., Pae, A. N., Lee, S. C. and Kim, H. J. (2010) KST5468, a new Ttype calcium channel antagonist, has an antinociceptive effect on inflammatory and neuropathic pain models. Pharmacol. Biochem. Behav. 97, 198-204. https://doi.org/10.1016/j.pbb.2010.07.018
  22. Lesage, F., Terrenoire, C., Romey, G. and Lazdunski, M. (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J. Biol. Chem. 275, 28398-28405. https://doi.org/10.1074/jbc.M002822200
  23. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. and Honore, E. (1999) Mechano-or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 274, 26691-26696. https://doi.org/10.1074/jbc.274.38.26691
  24. Marsh, B., Acosta, C., Djouhri, L. and Lawson, S. N. (2012) Leak $K^+$ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol. Cell. Neurosci. 49, 375-386. https://doi.org/10.1016/j.mcn.2012.01.002
  25. Mukhida, K., Mendez, I., McLeod, M., Kobayashi, N., Haughn, C., Milne, B., Baghbaderani, B., Sen, A., Behie, L. A. and Hong, M. (2007) Spinal GABAergic transplants attenuate mechanical allodynia in a rat model of neuropathic pain. Stem Cells 25, 2874-2885. https://doi.org/10.1634/stemcells.2007-0326
  26. Noel, J., Zimmermann, K., Busserolles, J., Deval, E., Alloui, A., Diochot, S., Guy, N., Borsotto, M., Reeh, P., Eschalier, A. and Lazdunski, M. (2009) The mechano-activated $K^+$ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 28, 1308-1318. https://doi.org/10.1038/emboj.2009.57
  27. Ocana, M., Cendan, C. M., Cobos, E. J., Entrena, J. M. and Baeyens, J. M. (2004) Potassium channels and pain: present realities and future opportunities. Eur. J. Pharmacol. 500, 203-219. https://doi.org/10.1016/j.ejphar.2004.07.026
  28. Oh, U., Hwang, S. W. and Kim, D. (1996) Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J. Neurosci. 16,1659-1667. https://doi.org/10.1523/JNEUROSCI.16-05-01659.1996
  29. Patel, A. and Honore, E. (2002) The TREK two P domain K+ channels. J. Physiol. 539, 647. https://doi.org/10.1113/jphysiol.2002.014829
  30. Rodrigues, N., Bennis, K., Vivier D., Pereira, V., Chatelain, F. C., Chapuy E., Deokar, H., Busserolles, J., Lesage, F., Eschalier, A. and Ducki, S. (2014) Synthesis and structure-activity relationship study of substituted caffeate esters as antinociceptive agents modulating the TREK-1 channel. Eur. J. Med. Chem. 75, 391-402 https://doi.org/10.1016/j.ejmech.2014.01.049
  31. Saade, N., Baliki, M., El-Khoury, C., Hawwa, N., Atweh, S., Apkarian, A. and Jabbur, S. J. (2002) The role of the dorsal columns in neuropathic behavior: evidence for plasticity and non-specificity. Neuroscience 115, 403-413. https://doi.org/10.1016/S0306-4522(02)00417-7
  32. Takeda, M., Tsuboi, Y., Kitagawa, J., Nakagawa, K., Iwata, K. and Matsumoto, S. (2011) Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain. Mol. Pain 7, 5. https://doi.org/10.1186/1744-8069-7-5

Cited by

  1. ) channel opener, reduces rat dorsal root ganglion neuron excitability pp.00071188, 2017, https://doi.org/10.1111/bph.14098
  2. TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.00157
  3. Characterization of temperature-sensitive leak K+ currents and expression of TRAAK, TREK-1, and TREK2 channels in dorsal root ganglion neurons of rats vol.11, pp.1, 2018, https://doi.org/10.1186/s13041-018-0384-5
  4. MiR-183-5p Alleviates Chronic Constriction Injury-Induced Neuropathic Pain Through Inhibition of TREK-1 vol.43, pp.6, 2018, https://doi.org/10.1007/s11064-018-2529-4
  5. Role of TREK-1 in Health and Disease, Focus on the Central Nervous System vol.10, pp.None, 2016, https://doi.org/10.3389/fphar.2019.00379
  6. Early Stimulation of TREK Channel Transcription and Activity Induced by Oxaliplatin-Dependent Cytosolic Acidification vol.21, pp.19, 2016, https://doi.org/10.3390/ijms21197164
  7. Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond vol.61, pp.1, 2016, https://doi.org/10.1146/annurev-pharmtox-030920-111536
  8. PKC‐ and PKA‐dependent phosphorylation modulates TREK‐1 function in naïve and neuropathic rats vol.157, pp.6, 2016, https://doi.org/10.1111/jnc.15204