DOI QR코드

DOI QR Code

Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders

  • Kim, Ki Chan (Department of Neuroscience, University of Texas Southwestern Medical Center) ;
  • Gonzales, Edson Luck (Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University) ;
  • Lazaro, Maria T. (Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California) ;
  • Choi, Chang Soon (Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University) ;
  • Bahn, Geon Ho (Department of Neuropsychiatry, School of Medicine, Kyung Hee University) ;
  • Yoo, Hee Jeong (Department of Neuropsychiatry, Seoul National University Bungdang Hospital) ;
  • Shin, Chan Young (Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University)
  • Received : 2016.03.15
  • Accepted : 2016.04.05
  • Published : 2016.05.01

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.

Keywords

References

  1. Abraham, W. C. (2008) Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9, 387. https://doi.org/10.1038/nrn2356
  2. Alarcon, M., Abrahams, B. S., Stone, J. L., Duvall, J. A., Perederiy, J. V., Bomar, J. M., Sebat, J., Wigler, M., Martin, C. L., Ledbetter, D. H., Nelson, S. F., Cantor, R. M. and Geschwind, D. H. (2008) Linkage, Association, and Gene-Expression Analyses Identify CNTNAP2 as an Autism-Susceptibility Gene. Am. J. Hum. Genet. 82, 150-159. https://doi.org/10.1016/j.ajhg.2007.09.005
  3. Allen, G. and Courchesne, E. (2003) Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am. J. Psychiatry 160, 262-273. https://doi.org/10.1176/appi.ajp.160.2.262
  4. Altamura, C., Dell'Acqua, M. L., Moessner, R., Murphy, D. L., Lesch, K. P. and Persico, A. M. (2007) Altered neocortical cell density and layer thickness in serotonin transporter knockout mice: a quantitation study. Cereb. Cortex 17, 1394-1401. https://doi.org/10.1093/cercor/bhl051
  5. Aman, M. G. and Langworthy, K. S. (2000) Pharmacotherapy for hyperactivity in children with autism and other pervasive developmental disorders. J. Autism Dev. Disord. 30, 451-459. https://doi.org/10.1023/A:1005559725475
  6. Amaral, D., Bauman, M. and Schumann, C. M. (2003) The amygdala and autism: implications from non-human primate studies. Genes Brain Behav. 2, 295-302. https://doi.org/10.1034/j.1601-183X.2003.00043.x
  7. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. American Psychiatric Publishing.
  8. Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U. and Zoghbi, H. Y. (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185-188. https://doi.org/10.1038/13810
  9. Amodeo, D. A., Jones, J. H., Sweeney, J. A. and Ragozzino, M. E. (2012) Differences in BTBR T+ tf/J and C57BL/6J mice on probabilistic reversal learning and stereotyped behaviors. Behav. Brain Res. 227, 64-72. https://doi.org/10.1016/j.bbr.2011.10.032
  10. Andari, E., Duhamel, J. R., Zalla, T., Herbrecht, E., Leboyer, M. and Sirigu, A. (2010) Promoting social behavior with oxytocin in highfunctioning autism spectrum disorders. Proc. Natl. Acad. Sci. U.S.A. 107, 4389-4394. https://doi.org/10.1073/pnas.0910249107
  11. Arking, D. E., Cutler, D. J., Brune, C. W., Teslovich, T. M., West, K., Ikeda, M., Rea, A., Guy, M., Lin, S., Cook E. H. and Chakravarti, A. (2008) A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am. J. Hum. Genet. 82, 160-164. https://doi.org/10.1016/j.ajhg.2007.09.015
  12. Arndt, T. L., Stodgell, C. J. and Rodier, P. M. (2005) The teratology of autism. Int. J. Dev. Neurosci. 23, 189-199. https://doi.org/10.1016/j.ijdevneu.2004.11.001
  13. Aronson, M., Hagberg, B. and Gillberg, C. (1997) Attention deficits and autistic spectrum problems in children exposed to alcohol during gestation: a follow-up study. Dev. Med. Child Neurol. 39, 583-587.
  14. Ashwood, P., Krakowiak, P., Hertz-Picciotto, I., Hansen, R., Pessah, I. and Van de Water, J. (2011) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun. 25, 40-45. https://doi.org/10.1016/j.bbi.2010.08.003
  15. Auerbach, B. D., Osterweil, E. K. and Bear, M. F. (2011) Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480, 63-68. https://doi.org/10.1038/nature10658
  16. Autism and Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators (2014) Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill. Summ. 63, 1-21.
  17. Bachevalier, J. (1994) Medial temporal lobe structures and autism: a review of clinical and experimental findings. Neuropsychologia 32, 627-648. https://doi.org/10.1016/0028-3932(94)90025-6
  18. Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E. and Rutter, M. (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol. Med. 25, 63-77. https://doi.org/10.1017/S0033291700028099
  19. Ballas, N., Lioy, D. T., Grunseich, C. and Mandel, G. (2009) Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat. Neurosci. 12, 311-317. https://doi.org/10.1038/nn.2275
  20. Barnea-Goraly, N., Frazier, T. W., Piacenza, L., Minshew, N. J., Keshavan, M. S., Reiss, A. L. and Hardan, A. Y. (2014) A preliminary longitudinal volumetric MRI study of amygdala and hippocampal volumes in autism. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 48, 124-128. https://doi.org/10.1016/j.pnpbp.2013.09.010
  21. Bateup, H. S., Takasaki, K. T., Saulnier, J. L., Denefrio, C. L. and Sabatini, B. L. (2011) Loss of Tsc1 in vivo impairs hippocampal mGluRLTD and increases excitatory synaptic function. J. Neurosci. 31, 8862-8869. https://doi.org/10.1523/JNEUROSCI.1617-11.2011
  22. Bauman, M. and Kemper, T. L. (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35, 866-874. https://doi.org/10.1212/WNL.35.6.866
  23. Bear, M. F., Huber, K. M. and Warren, S. T. (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370-377. https://doi.org/10.1016/j.tins.2004.04.009
  24. Bello, S. C. (2007) Autism and environmental influences: review and commentary. Rev. Environ. Health 22, 139-156.
  25. Benayed, R., Gharani, N., Rossman, I., Mancuso, V., Lazar, G., Kamdar, S., Bruse, S. E., Tischfield, S., Smith, B. J., Zimmerman, R. A., Dicicco-Bloom, E., Brzustowicz, L. M. and Millonig, J. H. (2005) Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. Am. J. Hum. Genet. 77, 851-868. https://doi.org/10.1086/497705
  26. Benvenuto, A., Moavero, R., Alessandrelli, R., Manzi, B. and Curatolo, P. (2009) Syndromic autism: causes and pathogenetic pathways. World J. Pediatr. 5, 169-176. https://doi.org/10.1007/s12519-009-0033-2
  27. Berkel, S., Marshall, C. R., Weiss, B., Howe, J., Roeth, R., Moog, U., Endris, V., Roberts, W., Szatmari, P., Pinto, D., Bonin, M., Riess, A., Engels, H., Sprengel, R., Scherer, S. W. and Rappold, G. A. (2010) Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat. Genet. 42, 489-491. https://doi.org/10.1038/ng.589
  28. Berkel, S., Tang, W., Treviño, M., Vogt, M., Obenhaus, H. A., Gass, P., Scherer, S. W., Sprengel, R., Schratt, G. and Rappold, G. A. (2012) Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology. Hum. Mol. Genet. 21, 344-357. https://doi.org/10.1093/hmg/ddr470
  29. Bernard, S., Enayati, A., Roger, H., Binstock, T. and Redwood, L. (2002) The role of mercury in the pathogenesis of autism. Mol. Psychiatry 7 Suppl 2, S42-S43. https://doi.org/10.1038/sj.mp.4001177
  30. Bernardet, M. and Crusio, W. E. (2006) Fmr1 KO mice as a possible model of autistic features. Sci. World J. 6, 1164-1176. https://doi.org/10.1100/tsw.2006.220
  31. Betancur, C., Corbex, M., Spielewoy, C., Philippe, A., Laplanche, J. L., Launay, J. M., Gillberg, C., Mouren-Siméoni, M. C., Hamon, M., Giros, B., Nosten-Bertrand, M. and Leboyer, M. (2002) Serotonin transporter gene polymorphisms and hyperserotonemia in autistic disorder. Mol. Psychiatry 7, 67-71. https://doi.org/10.1038/sj.mp.4000923
  32. Bielsky, I. F., Hu, S. B., Ren, X., Terwilliger, E. F. and Young, L. J. (2005) The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47, 503-513. https://doi.org/10.1016/j.neuron.2005.06.031
  33. Bill, B. R. and Geschwind, D. H. (2009) Genetic advances in autism: heterogeneity and convergence on shared pathways. Curr. Opin. Genet. Dev. 19, 271-278. https://doi.org/10.1016/j.gde.2009.04.004
  34. Binder, D. K. and Scharfman, H. E. (2004) Brain-derived neurotrophic factor. Growth Factors 22, 123-131. https://doi.org/10.1080/08977190410001723308
  35. Blanchard, D. C., Defensor, E. B., Meyza, K. Z., Pobbe, R. L., Pearson, B. L., Bolivar, V. J. and Blanchard, R. J. (2012) BTBR T+tf/J mice: autism-relevant behaviors and reduced fractone-associated heparan sulfate. Neurosci. Biobehav. Rev. 36, 285-296. https://doi.org/10.1016/j.neubiorev.2011.06.008
  36. Blatt, G. J. (2005) GABAergic cerebellar system in autism: a neuropathological and developmental perspective. Int. Rev. Neurobiol. 71, 167-178. https://doi.org/10.1016/S0074-7742(05)71007-2
  37. Blatt, G. J., Fitzgerald, C. M., Guptill, J. T., Booker, A. B., Kemper, T. L. and Bauman, M. L. (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J. Autism Dev. Disord. 31, 537-543. https://doi.org/10.1023/A:1013238809666
  38. Blundell, J., Blaiss, C. A., Etherton, M. R., Espinosa, F., Tabuchi, K., Walz, C., Bolliger, M. F., Sudhof, T. C. and Powell, C. M. (2010) Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J. Neurosci. 30, 2115-2129. https://doi.org/10.1523/JNEUROSCI.4517-09.2010
  39. Bobee, S., Mariette, E., Tremblay-Leveau, H. and Caston, J. (2000) Effects of early midline cerebellar lesion on cognitive and emotional functions in the rat. Behav. Brain Res. 112, 107-117. https://doi.org/10.1016/S0166-4328(00)00166-2
  40. Boccaccio, I., Glatt-Deeley, H., Watrin, F., Roeckel, N., Lalande, M. and Muscatelli, F. (1999) The human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the Prader- Willi region. Hum. Mol. Genet. 8, 2497-2505. https://doi.org/10.1093/hmg/8.13.2497
  41. Bolivar, V. J., Walters, S. R. and Phoenix, J. L. (2007) Assessing autism- like behavior in mice: variations in social interactions among inbred strains. Behav. Brain Res. 176, 21-26. https://doi.org/10.1016/j.bbr.2006.09.007
  42. Bolton, P. F., Park, R. J., Higgins, J. N., Griffiths, P. D. and Pickles, A. (2002) Neuro-epileptic determinants of autism spectrum disorders in tuberous sclerosis complex. Brain 125, 1247-1255. https://doi.org/10.1093/brain/awf124
  43. Bonaguidi, M. A., Wheeler, M. A., Shapiro, J. S., Stadel, R. P., Sun, G. J., Ming, G. L. and Song, H. (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145, 1142-1155. https://doi.org/10.1016/j.cell.2011.05.024
  44. Bortolato, M., Godar, S. C., Alzghoul, L., Zhang, J., Darling, R. D., Simpson, K. L., Bini, V., Chen, K., Wellman, C. L., Lin, R. C. and Shih, J. C. (2013) Monoamine oxidase A and A/B knockout mice display autistic-like features. Int. J. Neuropsychopharmacol. 16, 869-888. https://doi.org/10.1017/S1461145712000715
  45. Bozdagi, O., Sakurai, T., Papapetrou, D., Wang, X., Dickstein, D. L., Takahashi, N., Kajiwara, Y., Yang, M., Katz, A. M., Scattoni, M. L., Harris, M. J., Saxena, R., Silverman, J. L., Crawley, J. N., Zhou, Q., Hof, P. R. and Buxbaum, J. D. (2010) Haploinsufficiency of the autism- associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol. Autism 1, 15. https://doi.org/10.1186/2040-2392-1-15
  46. Brennan, F. X., Albeck, D. S. and Paylor, R. (2006) Fmr1 knockout mice are impaired in a leverpress escape/avoidance task. Genes Brain Behav. 5, 467-471. https://doi.org/10.1111/j.1601-183X.2005.00183.x
  47. Brune, C. W., Korvatska, E., Allen-Brady, K., Cook, E. H., Jr., Dawson, G., Devlin, B., Estes, A., Hennelly, M., Hyman, S. L., McMahon, W. M., Munson, J., Rodier, P. M., Schellenberg, G. D., Stodgell, C. J. and Coon, H. (2008) Heterogeneous association between engrailed- 2 and autism in the CPEA network. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 187-193. https://doi.org/10.1002/ajmg.b.30585
  48. Bryn, V., Halvorsen, B., Ueland, T., Isaksen, J., Kolkova, K., Ravn, K. and Skjeldal, O. (2015) Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood. Eur. J. Paediatr. Neurol. 19, 411-414. https://doi.org/10.1016/j.ejpn.2015.03.005
  49. Busquets-Garcia, A., Gomis-González, M., Guegan, T., Agustín- Pavon, C., Pastor, A., Mato, S., Pérez-Samartín, A., Matute, C., de la Torre, R., Dierssen, M., Maldonado, R. and Ozaita, A. (2013) Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat. Med. 19, 603-607. https://doi.org/10.1038/nm.3127
  50. Butler, M. G., Dasouki, M. J., Zhou, X. P., Talebizadeh, Z., Brown, M., Takahashi, T. N., Miles, J. H., Wang, C. H., Stratton, R., Pilarski, R. and Eng, C. (2005) Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J. Med. Genet. 42, 318-321. https://doi.org/10.1136/jmg.2004.024646
  51. Buxbaum, J. D., Silverman, J. M., Smith, C. J., Greenberg, D. A., Kilifarski, M., Reichert, J., Cook, E. H., Jr., Fang, Y., Song, C. Y. and Vitale, R. (2002) Association between a GABRB3 polymorphism and autism. Mol. Psychiatry 7, 311-316. https://doi.org/10.1038/sj.mp.4001011
  52. Caldwell, H. K., Wersinger, S. R. and Young, W. S., 3rd (2008) The role of the vasopressin 1b receptor in aggression and other social behaviours. Prog. Brain Res. 170, 65-72. https://doi.org/10.1016/S0079-6123(08)00406-8
  53. Carper, R. A. and Courchesne, E. (2005) Localized enlargement of the frontal cortex in early autism. Biol. Psychiatry 57, 126-133. https://doi.org/10.1016/j.biopsych.2004.11.005
  54. Carson, R. P., Van Nielen, D. L., Winzenburger, P. A. and Ess, K. C. (2012) Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol. Dis. 45, 369-380. https://doi.org/10.1016/j.nbd.2011.08.024
  55. Casanova, M. F., Buxhoeveden, D. and Gomez, J. (2003) Disruption in the inhibitory architecture of the cell minicolumn: implications for autisim. Neuroscientist 9, 496-507. https://doi.org/10.1177/1073858403253552
  56. Casanova, M. F., Buxhoeveden, D. P. and Brown, C. (2002) Clinical and macroscopic correlates of minicolumnar pathology in autism. J. Child Neurol. 17, 692-695. https://doi.org/10.1177/088307380201700908
  57. Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W., Hof, P. R., Trippe, J., Stone, J. and Schmitz, C. (2006) Minicolumnar abnormalities in autism. Acta Neuropathol. 112, 287-303. https://doi.org/10.1007/s00401-006-0085-5
  58. Cases, O., Seif, I., Grimsby, J., Gaspar, P., Chen, K., Pournin, S., Muller, U., Aguet, M., Babinet, C., Shih, J. C. and De Maeyer, E. (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268, 1763-1766. https://doi.org/10.1126/science.7792602
  59. Chadman, K. K. (2011) Fluoxetine but not risperidone increases sociability in the BTBR mouse model of autism. Pharmacol. Biochem. Behav. 97, 586-594. https://doi.org/10.1016/j.pbb.2010.09.012
  60. Chahrour, M., Jung, S. Y., Shaw, C., Zhou, X., Wong, S. T., Qin, J. and Zoghbi, H. Y. (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224-1229. https://doi.org/10.1126/science.1153252
  61. Chahrour, M. and Zoghbi, H. Y. (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56, 422-437. https://doi.org/10.1016/j.neuron.2007.10.001
  62. Chakrabarti, S. and Fombonne, E. (2005) Pervasive developmental disorders in preschool children: confirmation of high prevalence. Am. J. Psychiatry 162, 1133-1141. https://doi.org/10.1176/appi.ajp.162.6.1133
  63. Chan, J. P., Unger, T. J., Byrnes, J. and Rios, M. (2006) Examination of behavioral deficits triggered by targeting Bdnf in fetal or postnatal brains of mice. Neuroscience 142, 49-58. https://doi.org/10.1016/j.neuroscience.2006.06.002
  64. Chao, H. T., Chen, H., Samaco, R. C., Xue, M., Chahrour, M., Yoo, J., Neul, J. L., Gong, S., Lu, H. C., Heintz, N., Ekker, M., Rubenstein, J. L., Noebels, J. L., Rosenmund, C. and Zoghbi, H. Y. (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263-269. https://doi.org/10.1038/nature09582
  65. Cheh, M. A., Millonig, J. H., Roselli, L. M., Ming, X., Jacobsen, E., Kamdar, S. and Wagner, G. C. (2006) En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res. 1116, 166-176. https://doi.org/10.1016/j.brainres.2006.07.086
  66. Chen, Y., Beffert, U., Ertunc, M., Tang, T. S., Kavalali, E. T., Bezprozvanny, I. and Herz, J. (2005) Reelin modulates NMDA receptor activity in cortical neurons. J. Neurosci. 25, 8209-8216. https://doi.org/10.1523/JNEUROSCI.1951-05.2005
  67. Chess, S., Fernandez, P. and Korn, S. (1978) Behavioral consequences of congenital rubella. J. Pediatr. 93, 699-703. https://doi.org/10.1016/S0022-3476(78)80921-4
  68. Chevere-Torres, I., Maki, J. M., Santini, E. and Klann, E. (2012) Impaired social interactions and motor learning skills in tuberous sclerosis complex model mice expressing a dominant/negative form of tuberin. Neurobiol. Dis. 45, 156-164. https://doi.org/10.1016/j.nbd.2011.07.018
  69. Ching, M. S., Shen, Y., Tan, W. H., Jeste, S. S., Morrow, E. M., Chen, X., Mukaddes, N. M., Yoo, S. Y., Hanson, E., Hundley, R., Austin, C., Becker, R. E., Berry, G. T., Driscoll, K., Engle, E. C., Friedman, S., Gusella, J. F., Hisama, F. M., Irons, M. B., Lafiosca, T., LeClair, E., Miller, D. T., Neessen, M., Picker, J. D., Rappaport, L., Rooney, C. M., Sarco, D. P., Stoler, J. M., Walsh, C. A., Wolff, R. R., Zhang, T., Nasir, R. H. and Wu, B. L. (2010) Deletions of NRXN1 (neurexin- 1) predispose to a wide spectrum of developmental disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 937-947.
  70. Cho, K. S., Kwon, K. J., Choi, C. S., Jeon, S. J., Kim, K. C., Park, J. H., Ko, H. M., Lee, S. H., Cheong, J. H., Ryu, J. H., Han, S. H. and Shin, C. Y. (2013) Valproic acid induces astrocyte-dependent neurite outgrowth from cultured rat primary cortical neuron via modulation of tPA/PAI-1 activity. Glia 61, 694-709. https://doi.org/10.1002/glia.22463
  71. Christianson, A. L., Chesler, N. and Kromberg, J. G. (1994) Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev. Med. Child Neurol. 36, 361-369.
  72. Chu, E. C. and Tarnawski, A. S. (2004) PTEN regulatory functions in tumor suppression and cell biology. Med. Sci. Monit. 10, RA235-RA241.
  73. Cichowski, K. and Jacks, T. (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593-604. https://doi.org/10.1016/S0092-8674(01)00245-8
  74. Cohen, I., Liu, X., Lewis, M., Chudley, A., Forster-Gibson, C., Gonzalez, M., Jenkins, E., Brown, W. and Holden, J. (2011) Autism severity is associated with child and maternal MAOA genotypes. Clin. Genet. 79, 355-362. https://doi.org/10.1111/j.1399-0004.2010.01471.x
  75. Cohen, I. L., Liu, X., Schutz, C., White, B. N., Jenkins, E. C., Brown, W. T. and Holden, J. J. (2003) Association of autism severity with a monoamine oxidase A functional polymorphism. Clin. Genet. 64, 190-197. https://doi.org/10.1034/j.1399-0004.2003.00115.x
  76. Comoletti, D., De Jaco, A., Jennings, L. L., Flynn, R. E., Gaietta, G., Tsigelny, I., Ellisman, M. H. and Taylor, P. (2004) The Arg451Cysneuroligin-3 mutation associated with autism reveals a defect in protein processing. J. Neurosci. 24, 4889-4893. https://doi.org/10.1523/JNEUROSCI.0468-04.2004
  77. Correa-Cerro, L. S., Wassif, C. A., Kratz, L., Miller, G. F., Munasinghe, J. P., Grinberg, A., Fliesler, S. J. and Porter, F. D. (2006) Development and characterization of a hypomorphic Smith-Lemli-Opitz syndrome mouse model and efficacy of simvastatin therapy. Hum. Mol. Genet. 15, 839-851. https://doi.org/10.1093/hmg/ddl003
  78. Costa, R. M., Federov, N. B., Kogan, J. H., Murphy, G. G., Stern, J., Ohno, M., Kucherlapati, R., Jacks, T. and Silva, A. J. (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415, 526-530. https://doi.org/10.1038/nature711
  79. Costa, R. M., Yang, T., Huynh, D. P., Pulst, S. M., Viskochil, D. H., Silva, A. J. and Brannan, C. I. (2001) Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1. Nat. Genet. 27, 399-405. https://doi.org/10.1038/86898
  80. Courchesne, E., Saitoh, O., Yeung-Courchesne, R., Press, G. A., Lincoln, A. J., Haas, R. H. and Schreibman, L. (1994) Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. AJR Am. J. Roentgenol. 162, 123-130. https://doi.org/10.2214/ajr.162.1.8273650
  81. Croen, L. A., Grether, J. K., Yoshida, C. K., Odouli, R. and Van de Water, J. (2005) Maternal autoimmune diseases, asthma and allergies, and childhood autism spectrum disorders: a case-control study. Arch. Pediatr. Adolesc. Med. 159, 151-157.
  82. Curatolo, P., Porfirio, M. C., Manzi, B. and Seri, S. (2004) Autism in tuberous sclerosis. Eur. J. Paediatr. Neurol. 8, 327-332. https://doi.org/10.1016/j.ejpn.2004.08.005
  83. D'Arcangelo, G. (2005) The reeler mouse: anatomy of a mutant. Int. Rev. Neurobiol. 71, 383-417. https://doi.org/10.1016/S0074-7742(05)71016-3
  84. Dani, V. S., Chang, Q., Maffei, A., Turrigiano, G. G., Jaenisch, R. and Nelson, S. B. (2005) Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc. Natl. Acad. Sci. U.S.A. 102, 12560-12565. https://doi.org/10.1073/pnas.0506071102
  85. Daniels, J. L., Forssen, U., Hultman, C. M., Cnattingius, S., Savitz, D. A., Feychting, M. and Sparen, P. (2008) Parental psychiatric disorders associated with autism spectrum disorders in the offspring. Pediatrics 121, e1357-e1362. https://doi.org/10.1542/peds.2007-2296
  86. Davis, L. K., Hazlett, H. C., Librant, A. L., Nopoulos, P., Sheffield, V. C., Piven, J. and Wassink, T. H. (2008) Cortical enlargement in autism is associated with a functional VNTR in the monoamine oxidase A gene. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 1145-1151. https://doi.org/10.1002/ajmg.b.30738
  87. Daws, L. C., Munn, J. L., Valdez, M. F., Frosto-Burke, T. and Hensler, J. G. (2007) Serotonin transporter function, but not expression, is dependent on brain-derived neurotrophic factor (BDNF): in vivo studies in BDNF-deficient mice. J. Neurochem. 101, 641-651. https://doi.org/10.1111/j.1471-4159.2006.04392.x
  88. DeLorey, T. M., Handforth, A., Anagnostaras, S. G., Homanics, G. E., Minassian, B. A., Asatourian, A., Fanselow, M. S., Delgado-Escueta, A., Ellison, G. D. and Olsen, R. W. (1998) Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J. Neurosci. 18, 8505-8514. https://doi.org/10.1523/JNEUROSCI.18-20-08505.1998
  89. DeLorey, T. M., Sahbaie, P., Hashemi, E., Homanics, G. E. and Clark, J. D. (2008) Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav. Brain Res. 187, 207-220. https://doi.org/10.1016/j.bbr.2007.09.009
  90. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. and Pandolfi, P. P. (1998) Pten is essential for embryonic development and tumour suppression. Nat. Genet. 19, 348-355. https://doi.org/10.1038/1235
  91. Diergaarde, L., Gerrits, M. A., Brouwers, J. P. and van Ree, J. M. (2005) Early amygdala damage disrupts performance on medial prefrontal cortex-related tasks but spares spatial learning and memory in the rat. Neuroscience 130, 581-590. https://doi.org/10.1016/j.neuroscience.2004.09.022
  92. DiMario, F. J., Jr. (2004) Brain abnormalities in tuberous sclerosis complex. J. Child Neurol. 19, 650-657. https://doi.org/10.1177/08830738040190090401
  93. Dufour-Rainfray, D., Vourc'h, P., Le Guisquet, A. M., Garreau, L., Ternant, D., Bodard, S., Jaumain, E., Gulhan, Z., Belzung, C., Andres, C. R., Chalon, S. and Guilloteau, D. (2010) Behavior and serotonergic disorders in rats exposed prenatally to valproate: a model for autism. Neurosci. Lett. 470, 55-59. https://doi.org/10.1016/j.neulet.2009.12.054
  94. Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., Nygren, G., Rastam, M., Gillberg, I. C., Anckarsater, H., Sponheim, E., Goubran-Botros, H., Delorme, R., Chabane, N., Mouren-Simeoni, M. C., de Mas, P., Bieth, E., Roge, B., Heron, D., Burglen, L., Gillberg, C., Leboyer, M. and Bourgeron, T. (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 39, 25-27. https://doi.org/10.1038/ng1933
  95. Dykens, E. M., Lee, E. and Roof, E. (2011) Prader-Willi syndrome and autism spectrum disorders: an evolving story. J. Neurodev. Disord. 3, 225-237. https://doi.org/10.1007/s11689-011-9092-5
  96. Ehninger, D., Sano, Y., de Vries, P. J., Dies, K., Franz, D., Geschwind, D. H., Kaur, M., Lee, Y. S., Li, W., Lowe, J. K., Nakagawa, J. A., Sahin, M., Smith, K., Whittemore, V. and Silva, A. J. (2012) Gestational immune activation and Tsc2 haploinsufficiency cooperate to disrupt fetal survival and may perturb social behavior in adult mice. Mol. Psychiatry 17, 62-70. https://doi.org/10.1038/mp.2010.115
  97. Engelmann, M. and Landgraf, R. (1994) Microdialysis administration of vasopressin into the septum improves social recognition in Brattleboro rats. Physiol. Behav. 55, 145-149. https://doi.org/10.1016/0031-9384(94)90022-1
  98. Eslinger, P. J., Flaherty-Craig, C. V. and Benton, A. L. (2004) Developmental outcomes after early prefrontal cortex damage. Brain Cogn. 55, 84-103. https://doi.org/10.1016/S0278-2626(03)00281-1
  99. Etherton, M., Foldy, C., Sharma, M., Tabuchi, K., Liu, X., Shamloo, M., Malenka, R. C. and Sudhof, T. C. (2011) Autism-linked neuroligin- 3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc. Natl. Acad. Sci. U.S.A. 108, 13764-13769. https://doi.org/10.1073/pnas.1111093108
  100. Etherton, M. R., Blaiss, C. A., Powell, C. M. and Sudhof, T. C. (2009) Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc. Natl. Acad. Sci. U.S.A. 106, 17998-18003. https://doi.org/10.1073/pnas.0910297106
  101. Fatemi, S. H., Aldinger, K. A., Ashwood, P., Bauman, M. L., Blaha, C. D., Blatt, G. J., Chauhan, A., Chauhan, V., Dager, S. R., Dickson, P. E., Estes, A. M., Goldowitz, D., Heck, D. H., Kemper, T. L., King, B. H., Martin, L. A., Millen, K. J., Mittleman, G., Mosconi, M. W., Persico, A. M., Sweeney, J. A., Webb, S. J. and Welsh, J. P. (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11, 777-807. https://doi.org/10.1007/s12311-012-0355-9
  102. Fatemi, S. H., Halt, A. R., Stary, J. M., Kanodia, R., Schulz, S. C. and Realmuto, G. R. (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol. Psychiatry 52, 805-810. https://doi.org/10.1016/S0006-3223(02)01430-0
  103. Fatemi, S. H., Reutiman, T. J., Folsom, T. D. and Thuras, P. D. (2009) GABA(A) receptor downregulation in brains of subjects with autism. J. Autism Dev. Disord. 39, 223-230. https://doi.org/10.1007/s10803-008-0646-7
  104. Ferguson, J. N., Aldag, J. M., Insel, T. R. and Young, L. J. (2001) Oxytocin in the medial amygdala is essential for social recognition in the mouse. J. Neurosci. 21, 8278-8285. https://doi.org/10.1523/JNEUROSCI.21-20-08278.2001
  105. Fidler, D. J., Bailey, J. N. and Smalley, S. L. (2000) Macrocephaly in autism and other pervasive developmental disorders. Dev. Med. Child Neurol. 42, 737-740. https://doi.org/10.1017/S0012162200001365
  106. Fisher, S. E. and Scharff, C. (2009) FOXP2 as a molecular window into speech and language. Trends Genet. 25, 166-177. https://doi.org/10.1016/j.tig.2009.03.002
  107. Fitzky, B. U., Moebius, F. F., Asaoka, H., Waage-Baudet, H., Xu, L., Xu, G., Maeda, N., Kluckman, K., Hiller, S., Yu, H., Batta, A. K., Shefer, S., Chen, T., Salen, G., Sulik, K., Simoni, R. D., Ness, G. C., Glossmann, H., Patel, S. B. and Tint, G. S. (2001) 7-Dehydrocholesterol- dependent proteolysis of HMG-CoA reductase suppresses sterol biosynthesis in a mouse model of Smith-Lemli-Opitz/RSH syndrome. J. Clin. Invest. 108, 905-915. https://doi.org/10.1172/JCI200112103
  108. Fombonne, E. (1999) The epidemiology of autism: a review. Psychol. Med. 29, 769-786. https://doi.org/10.1017/S0033291799008508
  109. Frye, C. A. and Llaneza, D. C. (2010) Corticosteroid and neurosteroid dysregulation in an animal model of autism, BTBR mice. Physiol. Behav. 100, 264-267. https://doi.org/10.1016/j.physbeh.2010.03.005
  110. Fukuchi, M., Nii, T., Ishimaru, N., Minamino, A., Hara, D., Takasaki, I., Tabuchi, A. and Tsuda, M. (2009) Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci. Res. 65, 35-43. https://doi.org/10.1016/j.neures.2009.05.002
  111. Garber, K. B., Visootsak, J. and Warren, S. T. (2008) Fragile X syndrome. Eur. J. Hum. Genet. 16, 666-672. https://doi.org/10.1038/ejhg.2008.61
  112. Gardiner, S. M. and Bennett, T. (1983) The cardiovascular and renal responses to short-term isolation in Brattleboro rats. Clin. Sci. 64, 377-382. https://doi.org/10.1042/cs0640377
  113. Gauthier, J., Bonnel, A., St-Onge, J., Karemera, L., Laurent, S., Mottron, L., Fombonne, E., Joober, R. and Rouleau, G. A. (2005) NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 132B, 74-75. https://doi.org/10.1002/ajmg.b.30066
  114. Gauthier, J., Champagne, N., Lafrenière, R. G., Xiong, L., Spiegelman, D., Brustein, E., Lapointe, M., Peng, H., Côté, M., Noreau, A., Hamdan, F. F., Addington, A. M., Rapoport, J. L., Delisi, L. E., Krebs, M. O., Joober, R., Fathalli, F., Mouaffak, F., Haghighi, A. P., Néri, C., Dube, M. P., Samuels, M. E., Marineau, C., Stone, E. A., Awadalla, P., Barker, P. A., Carbonetto, S., Drapeau, P. and Rouleau, G. A. (2010) De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 107, 7863-7868. https://doi.org/10.1073/pnas.0906232107
  115. Gepner, B. and Feron, F. (2009) Autism: a world changing too fast for a mis-wired brain? Neurosci. Biobehav. Rev. 33, 1227-1242. https://doi.org/10.1016/j.neubiorev.2009.06.006
  116. Geschwind, D. H. (2011) Genetics of autism spectrum disorders. Trends Cogn. Sci. 15, 409-416. https://doi.org/10.1016/j.tics.2011.07.003
  117. Geschwind, D. H. and Levitt, P. (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103-111. https://doi.org/10.1016/j.conb.2007.01.009
  118. Gillberg, C. (1998) Chromosomal disorders and autism. J. Autism Dev. Disord. 28, 415-425. https://doi.org/10.1023/A:1026004505764
  119. Gillberg, C. and de Souza, L. (2002) Head circumference in autism, Asperger syndrome, and ADHD: a comparative study. Dev. Med. Child Neurol. 44, 296-300.
  120. Gkogkas, C. G., Khoutorsky, A., Ran, I., Rampakakis, E., Nevarko, T., Weatherill, D. B., Vasuta, C., Yee, S., Truitt, M., Dallaire, P., Major, F., Lasko, P., Ruggero, D., Nader, K., Lacaille, J. C. and Sonenberg, N. (2013) Autism-related deficits via dysregulated eIF4Edependent translational control. Nature 493, 371-377.
  121. Go, H. S., Kim, K. C., Choi, C. S., Jeon, S. J., Kwon, K. J., Han, S.-H., Lee, J., Cheong, J. H., Ryu, J. H., Kim, C.-H., Ko, K. H. and Shin, C. Y. (2012) Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-$3{\beta}/{\beta}$-catenin pathway. Neuropharmacology 63, 1028-1041. https://doi.org/10.1016/j.neuropharm.2012.07.028
  122. Goffinet, A. M. (1983) The embryonic development of the inferior olivary complex in normal and reeler (rlORL) mutant mice. J. Comp. Neurol. 219, 10-24. https://doi.org/10.1002/cne.902190103
  123. Golan, H. M., Lev, V., Hallak, M., Sorokin, Y. and Huleihel, M. (2005) Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology 48, 903-917. https://doi.org/10.1016/j.neuropharm.2004.12.023
  124. Goorden, S. M., van Woerden, G. M., van der Weerd, L., Cheadle, J. P. and Elgersma, Y. (2007) Cognitive deficits in Tsc1+/- mice in the absence of cerebral lesions and seizures. Ann. Neurol. 62, 648-655. https://doi.org/10.1002/ana.21317
  125. Greer, P. L., Hanayama, R., Bloodgood, B. L., Mardinly, A. R., Lipton, D. M., Flavell, S. W., Kim, T. K., Griffith, E. C., Waldon, Z., Maehr, R., Ploegh, H. L., Chowdhury, S., Worley, P. F., Steen, J. and Greenberg, M. E. (2010) The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140, 704-716. https://doi.org/10.1016/j.cell.2010.01.026
  126. Gregorian, C., Nakashima, J., Le Belle, J., Ohab, J., Kim, R., Liu, A., Smith, K. B., Groszer, M., Garcia, A. D., Sofroniew, M. V., Carmichael, S. T., Kornblum, H. I., Liu, X. and Wu, H. (2009) Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J. Neurosci. 29, 1874-1886. https://doi.org/10.1523/JNEUROSCI.3095-08.2009
  127. Gregory, S. G., Connelly, J. J., Towers, A. J., Johnson, J., Biscocho, D., Markunas, C. A., Lintas, C., Abramson, R. K., Wright, H. H., Ellis, P., Langford, C. F., Worley, G., Delong, G. R., Murphy, S. K., Cuccaro, M. L., Persico, A. and Pericak-Vance, M. A. (2009) Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med. 7, 62. https://doi.org/10.1186/1741-7015-7-62
  128. Groc, L., Choquet, D., Stephenson, F. A., Verrier, D., Manzoni, O. J. and Chavis, P. (2007) NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J. Neurosci. 27, 10165-10175. https://doi.org/10.1523/JNEUROSCI.1772-07.2007
  129. Guastella, A. J., Einfeld, S. L., Gray, K. M., Rinehart, N. J., Tonge, B. J., Lambert, T. J. and Hickie, I. B. (2010) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol. Psychiatry 67, 692-694. https://doi.org/10.1016/j.biopsych.2009.09.020
  130. Guastella, A. J., Mitchell, P. B. and Dadds, M. R. (2008) Oxytocin increases gaze to the eye region of human faces. Biol. Psychiatry 63, 3-5. https://doi.org/10.1016/j.biopsych.2007.06.026
  131. Guffanti, G., Lievers, L. S., Bonati, M. T., Marchi, M., Geronazzo, L., Nardocci, N., Estienne, M., Larizza, L., Macciardi, F. and Russo, S. (2011) Role of UBE3A and ATP10A genes in autism susceptibility region 15q11-q13 in an Italian population: A positive replication for UBE3A. Psychiatry Res. 185, 33-38. https://doi.org/10.1016/j.psychres.2010.04.057
  132. Guy, J., Cheval, H., Selfridge, J. and Bird, A. (2011) The Role of MeCP2 in the Brain. Annu. Rev. Cell Dev. Biol. 27, 631-652. https://doi.org/10.1146/annurev-cellbio-092910-154121
  133. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. and Bird, A. (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322-326. https://doi.org/10.1038/85899
  134. Hallmayer, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B., Torigoe, T., Miller, J., Fedele, A., Collins, J., Smith, K., Lotspeich, L., Croen, L. A., Ozonoff, S., Lajonchere, C., Grether, J. K. and Risch, N. (2011) Genetic Heritability and Shared Environmental Factors Among Twin Pairs With Autism. Arch. Gen. Psychiatry 68, 1095-1102. https://doi.org/10.1001/archgenpsychiatry.2011.76
  135. Hardan, A. Y., Minshew, N. J., Mallikarjuhn, M. and Keshavan, M. S. (2001) Brain volume in autism. J. Child Neurol. 16, 421-424. https://doi.org/10.1177/088307380101600607
  136. Hatton, D. D., Sideris, J., Skinner, M., Mankowski, J., Bailey, D. B., Jr., Roberts, J. and Mirrett, P. (2006) Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am. J. Med. Genet. A 140A, 1804-1813. https://doi.org/10.1002/ajmg.a.31286
  137. Hava, G., Vered, L., Yael, M., Mordechai, H. and Mahoud, H. (2006) Alterations in behavior in adult offspring mice following maternal inflammation during pregnancy. Dev. Psychobiol. 48, 162-168. https://doi.org/10.1002/dev.20116
  138. Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., Gilmore, J. and Piven, J. (2005) Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch. Gen. Psychiatry 62, 1366-1376. https://doi.org/10.1001/archpsyc.62.12.1366
  139. Hertz-Picciotto, I., Croen, L. A., Hansen, R., Jones, C. R., van de Water, J. and Pessah, I. N. (2006) The CHARGE study: an epidemiologic investigation of genetic and environmental factors contributing to autism. Environ. Health Perspect. 114, 1119-1125. https://doi.org/10.1289/ehp.8483
  140. Hoeffer, C. A., Santini, E., Ma, T., Arnold, E. C., Whelan, A. M., Wong, H., Pierre, P., Pelletier, J. and Klann, E. (2013) Multiple components of eIF4F are required for protein synthesis-dependent hippocampal long-term potentiation. J. Neurophysiol. 109, 68-76. https://doi.org/10.1152/jn.00342.2012
  141. Hollander, E., Novotny, S., Hanratty, M., Yaffe, R., DeCaria, C. M., Aronowitz, B. R. and Mosovich, S. (2003) Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger's disorders. Neuropsychopharmacology 28, 193-198. https://doi.org/10.1038/sj.npp.1300021
  142. Holmes, A., Yang, R. J., Lesch, K. P., Crawley, J. N. and Murphy, D. L. (2003) Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28, 2077-2088. https://doi.org/10.1038/sj.npp.1300266
  143. Homanics, G. E., DeLorey, T. M., Firestone, L. L., Quinlan, J. J., Handforth, A., Harrison, N. L., Krasowski, M. D., Rick, C. E., Korpi, E. R., Makela, R., Brilliant, M. H., Hagiwara, N., Ferguson, C., Snyder, K. and Olsen, R. W. (1997) Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc. Natl. Acad. Sci. U.S.A. 94, 4143-4148. https://doi.org/10.1073/pnas.94.8.4143
  144. Hornig, M., Weissenbock, H., Horscroft, N. and Lipkin, W. I. (1999) An infection-based model of neurodevelopmental damage. Proc. Natl. Acad. Sci. U.S.A. 96, 12102-12107. https://doi.org/10.1073/pnas.96.21.12102
  145. Hranilovic, D., Novak, R., Babic, M., Novokmet, M., Bujas-Petkovic, Z. and Jernej, B. (2008) Hyperserotonemia in autism: the potential role of 5HT-related gene variants. Coll. Antropol. 32 Suppl 1, 75-80.
  146. Hsiao, E. Y., McBride, S. W., Chow, J., Mazmanian, S. K. and Patterson, P. H. (2012) Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc. Natl. Acad. Sci. U.S.A. 109, 12776-12781. https://doi.org/10.1073/pnas.1202556109
  147. Huang, C. H. and Santangelo, S. L. (2008) Autism and serotonin transporter gene polymorphisms: A systematic review and meta-analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 903-913. https://doi.org/10.1002/ajmg.b.30720
  148. Huang, E. J. and Reichardt, L. F. (2001) Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677-736. https://doi.org/10.1146/annurev.neuro.24.1.677
  149. Hung, A. Y., Futai, K., Sala, C., Valtschanoff, J. G., Ryu, J., Woodworth, M. A., Kidd, F. L., Sung, C. C., Miyakawa, T., Bear, M. F., Weinberg, R. J. and Sheng, M. (2008) Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J. Neurosci. 28, 1697-1708. https://doi.org/10.1523/JNEUROSCI.3032-07.2008
  150. Hunter, P. (2010) The psycho gene. EMBO Rep. 11, 667-669. https://doi.org/10.1038/embor.2010.122
  151. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. and Grant, S. G. (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661-669. https://doi.org/10.1038/76615
  152. Hutsler, J. J. and Zhang, H. (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309, 83-94. https://doi.org/10.1016/j.brainres.2009.09.120
  153. Iafrati, J., Orejarena, M., Lassalle, O., Bouamrane, L., Gonzalez- Campo, C. and Chavis, P. (2014) Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway. Mol. Psychiatry 19, 417-426. https://doi.org/10.1038/mp.2013.66
  154. Insel, T. R. (2010) The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65, 768-779. https://doi.org/10.1016/j.neuron.2010.03.005
  155. Irons, M., Elias, E. R., Salen, G., Tint, G. S. and Batta, A. K. (1993) Defective cholesterol biosynthesis in Smith-Lemli-Opitz syndrome. Lancet 341, 1414.
  156. Irwin, S. A., Galvez, R. and Greenough, W. T. (2000) Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb. Cortex 10, 1038-1044. https://doi.org/10.1093/cercor/10.10.1038
  157. Jacob, S., Brune, C. W., Carter, C. S., Leventhal, B. L., Lord, C. and Cook, E. H., Jr. (2007) Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci Lett. 417, 6-9. https://doi.org/10.1016/j.neulet.2007.02.001
  158. Jamain, S., Quach, H., Betancur, C., Rastam, M., Colineaux, C., Gillberg, I. C., Soderstrom, H., Giros, B., Leboyer, M., Gillberg, C. and Bourgeron, T. (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 34, 27-29. https://doi.org/10.1038/ng1136
  159. Jamain, S., Radyushkin, K., Hammerschmidt, K., Granon, S., Boretius, S., Varoqueaux, F., Ramanantsoa, N., Gallego, J., Ronnenberg, A., Winter, D., Frahm, J., Fischer, J., Bourgeron, T., Ehrenreich, H. and Brose, N. (2008) Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc. Natl. Acad. Sci. U.S.A. 105, 1710-1715. https://doi.org/10.1073/pnas.0711555105
  160. Jiang, X., Wang, J., Luo, T. and Li, Q. (2009) Impaired hypothalamicpituitary- adrenal axis and its feedback regulation in serotonin transporter knockout mice. Psychoneuroendocrinology 34, 317-331. https://doi.org/10.1016/j.psyneuen.2008.09.011
  161. Jiang, Y. H. and Ehlers, M. D. (2013) Modeling Autism by SHANK Gene Mutations in Mice. Neuron 78, 8-27. https://doi.org/10.1016/j.neuron.2013.03.016
  162. Jiang, Y. H., Pan, Y., Zhu, L., Landa, L., Yoo, J., Spencer, C., Lorenzo, I., Brilliant, M., Noebels, J. and Beaudet, A. L. (2010) Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3. PLoS One 5, e12278. https://doi.org/10.1371/journal.pone.0012278
  163. Jiang, Y. H., Sahoo, T., Michaelis, R. C., Bercovich, D., Bressler, J., Kashork, C. D., Liu, Q., Shaffer, L. G., Schroer, R. J., Stockton, D. W., Spielman, R. S., Stevenson, R. E. and Beaudet, A. L. (2004) A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am. J. Med. Genet. A 131, 1-10.
  164. Joyal, C. C., Meyer, C., Jacquart, G., Mahler, P., Caston, J. and Lalonde, R. (1996) Effects of midline and lateral cerebellar lesions on motor coordination and spatial orientation. Brain Res. 739, 1-11. https://doi.org/10.1016/S0006-8993(96)00333-2
  165. Jung, G. A., Yoon, J. Y., Moon, B. S., Yang, D. H., Kim, H. Y., Lee, S. H., Bryja, V., Arenas, E. and Choi, K. Y. (2008) Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC Cell Biol. 9, 66. https://doi.org/10.1186/1471-2121-9-66
  166. Jung, K.-M., Sepers, M., Henstridge, C. M., Lassalle, O., Neuhofer, D., Martin, H., Ginger, M., Frick, A., DiPatrizio, N. V., Mackie, K., Katona, I., Piomelli, D. and Manzoni, O. J. (2012) Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat. Commun. 3, 1080. https://doi.org/10.1038/ncomms2045
  167. Jyonouchi, H., Geng, L., Ruby, A. and Zimmerman-Bier, B. (2005) Dysregulated innate immune responses in young children with autism spectrum disorders: their relationship to gastrointestinal symptoms and dietary intervention. Neuropsychobiology 51, 77-85. https://doi.org/10.1159/000084164
  168. Kalueff, A. V., Fox, M. A., Gallagher, P. S. and Murphy, D. L. (2007) Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice. Genes Brain Behav. 6, 389-400. https://doi.org/10.1111/j.1601-183X.2006.00270.x
  169. Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. and Watanabe, M. (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309-380. https://doi.org/10.1152/physrev.00019.2008
  170. Karvat, G. and Kimchi, T. (2014) Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology 39, 831-840. https://doi.org/10.1038/npp.2013.274
  171. Kataoka, S., Takuma, K., Hara, Y., Maeda, Y., Ago, Y. and Matsuda, T. (2013) Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int. J. Neuropsychopharmacol. 16, 91-103. https://doi.org/10.1017/S1461145711001714
  172. Kavaliers, M., Colwell, D. D., Choleris, E., Agmo, A., Muglia, L. J., Ogawa, S. and Pfaff, D. W. (2003) Impaired discrimination of and aversion to parasitized male odors by female oxytocin knockout mice. Genes Brain Behav. 2, 220-230. https://doi.org/10.1034/j.1601-183X.2003.00021.x
  173. Kemper, T. L. and Bauman, M. (1998) Neuropathology of infantile autism. J. Neuropathol. Exp. Neurol. 57, 645-652. https://doi.org/10.1097/00005072-199807000-00001
  174. Kemper, T. L. and Bauman, M. L. (1993) The contribution of neuropathologic studies to the understanding of autism. Neurol. Clin. 11, 175-187. https://doi.org/10.1016/S0733-8619(18)30176-2
  175. Kim, H. J. and Thayer, S. A. (2009) Lithium increases synapse formation between hippocampal neurons by depleting phosphoinositides. Mol. Pharmacol. 75, 1021-1030. https://doi.org/10.1124/mol.108.052357
  176. Kim, J. W., Seung, H., Kwon, K. J., Ko, M. J., Lee, E. J., Oh, H. A., Choi, C. S., Kim, K. C., Gonzales, E. L., You, J. S., Choi, D. H., Lee, J., Han, S. H., Yang, S. M., Cheong, J. H., Shin, C. Y. and Bahn, G. H. (2014a) Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism. PLoS One 9, e104927. https://doi.org/10.1371/journal.pone.0104927
  177. Kim, K. C., Choi, C. S., Kim, J.-W., Han, S.-H., Cheong, J. H., Ryu, J. H. and Shin, C. Y. (2014b) MeCP2 Modulates Sex Differences in the Postsynaptic Development of the Valproate Animal Model of Autism. Mol. Neurobiol. 1-17.
  178. Kim, K. C., Kim, P., Go, H. S., Choi, C. S., Yang, S. I., Cheong, J. H., Shin, C. Y. and Ko, K. H. (2011) The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol. Lett. 201, 137-142. https://doi.org/10.1016/j.toxlet.2010.12.018
  179. Kim, K. C., Lee, D.-K., Go, H. S., Kim, P., Choi, C. S., Kim, J.-W., Jeon, S. J., Song, M.-R. and Shin, C. Y. (2014c) Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol. 49, 512-528. https://doi.org/10.1007/s12035-013-8535-2
  180. Kolevzon, A., Cai, G., Soorya, L., Takahashi, N., Grodberg, D., Kajiwara, Y., Willner, J. P., Tryfon, A. and Buxbaum, J. D. (2011) Analysis of a purported SHANK3 mutation in a boy with autism: Clinical impact of rare variant research in neurodevelopmental disabilities. Brain Res. 1380, 98-105. https://doi.org/10.1016/j.brainres.2010.11.005
  181. Kolevzon, A., Gross, R. and Reichenberg, A. (2007) Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch. Pediatr. Adolesc. Med. 161, 326-333. https://doi.org/10.1001/archpedi.161.4.326
  182. Korade, Z., Folkes, O. M. and Harrison, F. E. (2013) Behavioral and serotonergic response changes in the Dhcr7-HET mouse model of Smith-Lemli-Opitz syndrome. Pharmacol. Biochem. Behav. 106, 101-108. https://doi.org/10.1016/j.pbb.2013.03.007
  183. Kuemerle, B., Gulden, F., Cherosky, N., Williams, E. and Herrup, K. (2007) The mouse Engrailed genes: a window into autism. Behav. Brain Res. 176, 121-132. https://doi.org/10.1016/j.bbr.2006.09.009
  184. Kuemerle, B., Zanjani, H., Joyner, A. and Herrup, K. (1997) Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. J. Neurosci. 17, 7881-7889. https://doi.org/10.1523/JNEUROSCI.17-20-07881.1997
  185. Kumamaru, E., Egashira, Y., Takenaka, R. and Takamori, S. (2014) Valproic acid selectively suppresses the formation of inhibitory synapses in cultured cortical neurons. Neurosci. Lett. 569, 142-147. https://doi.org/10.1016/j.neulet.2014.03.066
  186. Kuwagata, M., Ogawa, T., Shioda, S. and Nagata, T. (2009) Observation of fetal brain in a rat valproate-induced autism model: a developmental neurotoxicity study. Int. J. Dev. Neurosci. 27, 399-405. https://doi.org/10.1016/j.ijdevneu.2009.01.006
  187. Kwon, C. H., Luikart, B. W., Powell, C. M., Zhou, J., Matheny, S. A., Zhang, W., Li, Y., Baker, S. J. and Parada, L. F. (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50, 377-388. https://doi.org/10.1016/j.neuron.2006.03.023
  188. Lante, F., Meunier, J., Guiramand, J., De Jesus Ferreira, M. C., Cambonie, G., Aimar, R., Cohen-Solal, C., Maurice, T., Vignes, M. and Barbanel, G. (2008) Late N-acetylcysteine treatment prevents the deficits induced in the offspring of dams exposed to an immune stress during gestation. Hippocampus 18, 602-609. https://doi.org/10.1002/hipo.20421
  189. Larimore, J. L., Chapleau, C. A., Kudo, S., Theibert, A., Percy, A. K. and Pozzo-Miller, L. (2009) Bdnf overexpression in hippocampal neurons prevents dendritic atrophy caused by Rett-associated MECP2 mutations. Neurobiol. Dis. 34, 199-211.
  190. Leblond, C. S., Heinrich, J., Delorme, R., Proepper, C., Betancur, C., Huguet, G., Konyukh, M., Chaste, P., Ey, E., Rastam, M., Anckars?ter, H., Nygren, G., Gillberg, I. C., Melke, J., Toro, R., Regnault, B., Fauchereau, F., Mercati, O., Lemi?re, N., Skuse, D., Poot, M., Holt, R., Monaco, A. P., Järvelä, I., Kantojärvi, K., Vanhala, R., Curran, S., Collier, D. A., Bolton, P., Chiocchetti, A., Klauck, S. M., Poustka, F., Freitag, C. M., Waltes, R., Kopp, M., Duketis, E., Bacchelli, E., Minopoli, F., Ruta, L., Battaglia, A., Mazzone, L., Maestrini, E., Sequeira, A. F., Oliveira, B., Vicente, A., Oliveira, G., Pinto, D., Scherer, S. W., Zelenika, D., Delepine, M., Lathrop, M., Bonneau, D., Guinchat, V., Devillard, F., Assouline, B., Mouren, M. C., Leboyer, M., Gillberg, C., Boeckers, T. M. and Bourgeron, T. (2012) Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet. 8, e1002521. https://doi.org/10.1371/journal.pgen.1002521
  191. Lee, B. K. and McGrath, J. J. (2015) Advancing parental age and autism: multifactorial pathways. Trends Mol. Med. 21, 118-125. https://doi.org/10.1016/j.molmed.2014.11.005
  192. Lee, H. J., Caldwell, H. K., Macbeth, A. H. and Young, W. S., 3rd (2008) Behavioural studies using temporal and spatial inactivation of the oxytocin receptor. Prog. Brain Res. 170, 73-77. https://doi.org/10.1016/S0079-6123(08)00407-X
  193. Leyfer, O. T., Folstein, S. E., Bacalman, S., Davis, N. O., Dinh, E., Morgan, J., Tager-Flusberg, H. and Lainhart, J. E. (2006) Comorbid psychiatric disorders in children with autism: Interview development and rates of disorders. J. Autism Dev. Disord. 36, 849-861. https://doi.org/10.1007/s10803-006-0123-0
  194. Li, X., Hu, Z., He, Y., Xiong, Z., Long, Z., Peng, Y., Bu, F., Ling, J., Xun, G. and Mo, X. (2010) Association analysis of CNTNAP2 polymorphisms with autism in the Chinese Han population. Psychiatr. Genet. 20, 113-117.
  195. Li, X., Zhang, J., Cao, Z., Wu, J. and Shi, Y. (2006) Solution structure of GOPC PDZ domain and its interaction with the C-terminal motif of neuroligin. Protein Sci. 15, 2149-2158. https://doi.org/10.1110/ps.062087506
  196. Liu, W. S., Pesold, C., Rodriguez, M. A., Carboni, G., Auta, J., Lacor, P., Larson, J., Condie, B. G., Guidotti, A. and Costa, E. (2001) Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc. Natl. Acad. Sci. U.S.A. 98, 3477-3482. https://doi.org/10.1073/pnas.051614698
  197. Liu, X., Kawamura, Y., Shimada, T., Otowa, T., Koishi, S., Sugiyama, T., Nishida, H., Hashimoto, O., Nakagami, R., Tochigi, M., Umekage, T., Kano, Y., Miyagawa, T., Kato, N., Tokunaga, K. and Sasaki, T. (2010) Association of the oxytocin receptor (OXTR) gene polymorphisms with autism spectrum disorder (ASD) in the Japanese population. J. Hum. Genet. 55, 137-141. https://doi.org/10.1038/jhg.2009.140
  198. Liu, Z. H. and Smith, C. B. (2009) Dissociation of social and nonsocial anxiety in a mouse model of fragile X syndrome. Neurosci. Lett. 454, 62-66. https://doi.org/10.1016/j.neulet.2009.02.066
  199. LoParo, D. and Waldman, I. D. (2015) The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol. Psychiatry 20, 640-646. https://doi.org/10.1038/mp.2014.77
  200. Lozovaya, N., Gataullina, S., Tsintsadze, T., Tsintsadze, V., Pallesi-Pocachard, E., Minlebaev M., Goriounova, N. A., Buhler, E., Watrin, F., Shityakov, S., Becker, A. J., Bordey, A., Milh, M., Scavarda, D., Bulteau, C., Dorfmuller, G., Delalande, O., Represa, A., Cardoso, C., Dulac, O., Ben-Ari, Y. and Burnashev, N. (2014) Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nat. Commun. 5, 4563. https://doi.org/10.1038/ncomms5563
  201. Luikart, B. W., Schnell, E., Washburn, E. K., Bensen, A. L., Tovar, K. R. and Westbrook, G. L. (2011) Pten knockdown in vivo increases excitatory drive onto dentate granule cells. J. Neurosci. 31, 4345-4354. https://doi.org/10.1523/JNEUROSCI.0061-11.2011
  202. Lush, M. E., Li, Y., Kwon, C. H., Chen, J. and Parada, L. F. (2008) Neurofibromin is required for barrel formation in the mouse somatosensory cortex. J. Neurosci. 28, 1580-1587. https://doi.org/10.1523/JNEUROSCI.5236-07.2008
  203. Maccarrone, M., Rossi, S., Bari, M., De Chiara, V., Rapino, C., Musella, A., Bernardi, G., Bagni, C. and Centonze, D. (2010) Abnormal mGlu 5 receptor/endocannabinoid coupling in mice lacking FMRP and BC1 RNA. Neuropsychopharmacology 35, 1500-1509. https://doi.org/10.1038/npp.2010.19
  204. MacQueen, G. M., Ramakrishnan, K., Croll, S. D., Siuciak, J. A., Yu, G., Young, L. T. and Fahnestock, M. (2001) Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav. Neurosci. 115, 1145-1153. https://doi.org/10.1037/0735-7044.115.5.1145
  205. Maezawa, I. and Jin, L. W. (2010) Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J. Neurosci. 30, 5346-5356. https://doi.org/10.1523/JNEUROSCI.5966-09.2010
  206. Manning, M. A., Cassidy, S. B., Clericuzio, C., Cherry, A. M., Schwartz, S., Hudgins, L., Enns, G. M. and Hoyme, H. E. (2004) Terminal 22q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics 114, 451-457. https://doi.org/10.1542/peds.114.2.451
  207. Marrone, M. C., Marinelli, S., Biamonte, F., Keller, F., Sgobio, C. A., Ammassari-Teule, M., Bernardi, G. and Mercuri, N. B. (2006) Altered cortico-striatal synaptic plasticity and related behavioural impairments in reeler mice. Eur J. Neurosci. 24, 2061-2070. https://doi.org/10.1111/j.1460-9568.2006.05083.x
  208. Martin, H. G. and Manzoni, O. J. (2014) Late onset deficits in synaptic plasticity in the valproic acid rat model of autism. Front. Cell. Neurosci. 8, 23.
  209. Martin, L. A., Escher, T., Goldowitz, D. and Mittleman, G. (2004) A relationship between cerebellar Purkinje cells and spatial working memory demonstrated in a lurcher/chimera mouse model system. Genes Brain Behav. 3, 158-166. https://doi.org/10.1111/j.1601-183x.2004.00067.x
  210. Martin, L. A., Goldowitz, D. and Mittleman, G. (2010) Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism. Eur. J. Neurosci. 31, 544-555. https://doi.org/10.1111/j.1460-9568.2009.07073.x
  211. Martin, M. R. (1981) Morphology of the cochlear nucleus of the normal and reeler mutant mouse. J. Comp. Neurol. 197, 141-152. https://doi.org/10.1002/cne.901970111
  212. Martins, Y., Young, R. L. and Robson, D. C. (2008) Feeding and eating behaviors in children with autism and typically developing children. J. Autism Dev. Disord. 38, 1878-1887. https://doi.org/10.1007/s10803-008-0583-5
  213. Marui, T., Hashimoto, O., Nanba, E., Kato, C., Tochigi, M., Umekage, T., Ishijima, M., Kohda, K., Kato, N. and Sasaki, T. (2004) Association between the neurofibromatosis-1 (NF1) locus and autism in the Japanese population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 131B, 43-47. https://doi.org/10.1002/ajmg.b.20119
  214. Mazina, V., Gerdts, J., Trinh, S., Ankenman, K., Ward, T., Dennis, M. Y., Girirajan, S., Eichler, E. E. and Bernier, R. (2015) Epigenetics of autism-related impairment: copy number variation and maternal infection. J. Dev. Behav. Pediatr. 36, 61-67. https://doi.org/10.1097/DBP.0000000000000126
  215. Mbarek, O., Marouillat, S., Martineau, J., Barthelemy, C., Muh, J. P. and Andres, C. (1999) Association study of the NF1 gene and autistic disorder. Am. J. Med. Genet. 88, 729-732. https://doi.org/10.1002/(SICI)1096-8628(19991215)88:6<729::AID-AJMG26>3.0.CO;2-Q
  216. McFarlane, H. G., Kusek, G. K., Yang, M., Phoenix, J. L., Bolivar, V. J. and Crawley, J. N. (2008) Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. 7, 152-163. https://doi.org/10.1111/j.1601-183X.2007.00330.x
  217. McNaughton, C. H., Moon, J., Strawderman, M. S., Maclean, K. N., Evans, J. and Strupp, B. J. (2008) Evidence for social anxiety and impaired social cognition in a mouse model of fragile X syndrome. Behav. Neurosci. 122, 293-300. https://doi.org/10.1037/0735-7044.122.2.293
  218. Meikle, L., Talos, D. M., Onda, H., Pollizzi, K., Rotenberg, A., Sahin, M., Jensen, F. E. and Kwiatkowski, D. J. (2007) A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J. Neurosci. 27, 5546-5558. https://doi.org/10.1523/JNEUROSCI.5540-06.2007
  219. Meyer, U., Feldon, J. and Dammann, O. (2011) Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation? Pediatr. Res. 69, 26R-33R. https://doi.org/10.1203/PDR.0b013e318212c196
  220. Meziane, H., Schaller, F., Bauer, S., Villard, C., Matarazzo, V., Riet, F., Guillon, G., Lafitte, D., Desarmenien, M. G., Tauber, M. and Muscatelli, F. (2015) An Early Postnatal Oxytocin Treatment Prevents Social and Learning Deficits in Adult Mice Deficient for Magel2, a Gene Involved in Prader-Willi Syndrome and Autism. Biol. Psychiatry 78, 85-94. https://doi.org/10.1016/j.biopsych.2014.11.010
  221. Mineur, Y. S., Huynh, L. X. and Crusio, W. E. (2006) Social behavior deficits in the Fmr1 mutant mouse. Behav. Brain Res. 168, 172-175. https://doi.org/10.1016/j.bbr.2005.11.004
  222. Miura, K., Kishino, T., Li, E., Webber, H., Dikkes, P., Holmes, G. L. and Wagstaff, J. (2002) Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol. Dis. 9, 149-159. https://doi.org/10.1006/nbdi.2001.0463
  223. Monteggia, L. M., Luikart, B., Barrot, M., Theobold, D., Malkovska, I., Nef, S., Parada, L. F. and Nestler, E. J. (2007) Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol. Psychiatry 61, 187-197. https://doi.org/10.1016/j.biopsych.2006.03.021
  224. Moore, S. J., Turnpenny, P., Quinn, A., Glover, S., Lloyd, D. J., Montgomery, T. and Dean, J. C. (2000) A clinical study of 57 children with fetal anticonvulsant syndromes. J. Med. Genet. 37, 489-497. https://doi.org/10.1136/jmg.37.7.489
  225. Moretti, P., Levenson, J. M., Battaglia, F., Atkinson, R., Teague, R., Antalffy, B., Armstrong, D., Arancio, O., Sweatt, J. D. and Zoghbi, H. Y. (2006) Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J. Neurosci. 26, 319-327. https://doi.org/10.1523/JNEUROSCI.2623-05.2006
  226. Moy, S. S., Nadler, J. J., Young, N. B., Nonneman, R. J., Grossman, A. W., Murphy, D. L., D'Ercole, A. J., Crawley, J. N., Magnuson, T. R. and Lauder, J. M. (2009) Social approach in genetically engineered mouse lines relevant to autism. Genes Brain Behav. 8, 129-142. https://doi.org/10.1111/j.1601-183X.2008.00452.x
  227. Murer, M. G., Yan, Q. and Raisman-Vozari, R. (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog. Neurobiol. 63, 71-124. https://doi.org/10.1016/S0301-0082(00)00014-9
  228. Muroga, T., Adachi, K., Konagaya, M., Takayanagi, T. and Sobue, I. (1982) Effects of thyrotropin releasing hormone on cerebellar mutant mice--a kinesiological comparison between rolling mouse Nagoya, weaver and reeler. Jpn. J. Med. 21, 101-108. https://doi.org/10.2169/internalmedicine1962.21.101
  229. Nakao, M., Sutcliffe, J. S., Durtschi, B., Mutirangura, A., Ledbetter, D. H. and Beaudet, A. L. (1994) Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum. Mol. Genet. 3, 309-315. https://doi.org/10.1093/hmg/3.2.309
  230. Naviaux, R. K., Zolkipli, Z., Wang, L., Nakayama, T., Naviaux, J. C., Le, T. P., Schuchbauer, M. A., Rogac, M., Tang, Q., Dugan, L. L. and Powell, S. B. (2013) Antipurinergic therapy corrects the autism-like features in the poly(IC) mouse model. PLoS One 8, e57380. https://doi.org/10.1371/journal.pone.0057380
  231. Need, A. C., Ge, D., Weale, M. E., Maia, J., Feng, S., Heinzen, E. L., Shianna, K. V., Yoon, W., Kasperaviciute, D., Gennarelli, M., Strittmatter, W. J., Bonvicini, C., Rossi, G., Jayathilake, K., Cola, P. A., McEvoy, J. P., Keefe, R. S., Fisher, E. M., St Jean, P. L., Giegling, I., Hartmann, A. M., Moller, H. J., Ruppert, A., Fraser, G., Crombie, C., Middleton, L. T., St Clair, D., Roses, A. D., Muglia, P., Francks, C., Rujescu, D., Meltzer, H. Y. and Goldstein, D. B. (2009) A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet. 5, e1000373. https://doi.org/10.1371/journal.pgen.1000373
  232. Nosyreva, E. D. and Huber, K. M. (2006) Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J. Neurophysiol. 95, 3291-3295. https://doi.org/10.1152/jn.01316.2005
  233. Numis, A., Major, P., Montenegro, M., Muzykewicz, D., Pulsifer, M. and Thiele, E. (2011) Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology 76, 981-987. https://doi.org/10.1212/WNL.0b013e3182104347
  234. Nussbaum, J., Xu, Q., Payne, T. J., Ma, J. Z., Huang, W., Gelernter, J. and Li, M. D. (2008) Significant association of the neurexin-1 gene (NRXN1) with nicotine dependence in European- and African- American smokers. Hum. Mol. Genet. 17, 1569-1577. https://doi.org/10.1093/hmg/ddn044
  235. Oblak, A. L., Gibbs, T. T. and Blatt, G. J. (2011) Reduced GABAA receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Brain Res. 1380, 218-228. https://doi.org/10.1016/j.brainres.2010.09.021
  236. Ogawa, S., Kwon, C. H., Zhou, J., Koovakkattu, D., Parada, L. F. and Sinton, C. M. (2007) A seizure-prone phenotype is associated with altered free-running rhythm in Pten mutant mice. Brain Res. 1168, 112-123. https://doi.org/10.1016/j.brainres.2007.06.074
  237. Ognibene, E., Adriani, W., Macri, S. and Laviola, G. (2007) Neurobehavioural disorders in the infant reeler mouse model: interaction of genetic vulnerability and consequences of maternal separation. Behav. Brain Res. 177, 142-149. https://doi.org/10.1016/j.bbr.2006.10.027
  238. Onda, H., Crino, P. B., Zhang, H., Murphey, R. D., Rastelli, L., Gould Rothberg, B. E. and Kwiatkowski, D. J. (2002) Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway. Mol. Cell. Neurosci. 21, 561-574. https://doi.org/10.1006/mcne.2002.1184
  239. Ornoy, A. (2009) Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod. Toxicol. 28, 1-10. https://doi.org/10.1016/j.reprotox.2009.02.014
  240. Papaleo, F., Silverman, J. L., Aney, J., Tian, Q., Barkan, C. L., Chadman, K. K. and Crawley, J. N. (2011) Working memory deficits, increased anxiety-like traits, and seizure susceptibility in BDNF overexpressing mice. Learn. Mem. 18, 534-544. https://doi.org/10.1101/lm.2213711
  241. Pardo, C. A. and Eberhart, C. G. (2007) The neurobiology of autism. Brain Pathol. 17, 434-447. https://doi.org/10.1111/j.1750-3639.2007.00102.x
  242. Parker, K. J., Garner, J. P., Libove, R. A., Hyde, S. A., Hornbeak, K. B., Carson, D. S., Liao, C. P., Phillips, J. M., Hallmayer, J. F. and Hardan, A. Y. (2014) Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proc. Natl. Acad. Sci. U.S.A. 111, 12258-12263. https://doi.org/10.1073/pnas.1402236111
  243. Patrylo, P. R., Browning, R. A. and Cranick, S. (2006) Reeler homozygous mice exhibit enhanced susceptibility to epileptiform activity. Epilepsia 47, 257-266.
  244. Patterson, P. H. (2009) Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav. Brain Res. 204, 313-321. https://doi.org/10.1016/j.bbr.2008.12.016
  245. Patterson, P. H. (2011) Maternal infection and immune involvement in autism. Trends Mol. Med. 17, 389-394. https://doi.org/10.1016/j.molmed.2011.03.001
  246. Peca, J., Feliciano, C., Ting, J. T., Wang, W., Wells, M. F., Venkatraman, T. N., Lascola, C. D., Fu, Z. and Feng, G. (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437-442. https://doi.org/10.1038/nature09965
  247. Penagarikano, O., Abrahams, B. S., Herman, E. I., Winden, K. D., Gdalyahu, A., Dong, H., Sonnenblick, L. I., Gruver, R., Almajano, J., Bragin, A., Golshani, P., Trachtenberg, J. T., Peles, E. and Geschwind, D. H. (2011) Absence of CNTNAP2 Leads to Epilepsy, Neuronal Migration Abnormalities, and Core Autism-Related Deficits. Cell 147, 235-246. https://doi.org/10.1016/j.cell.2011.08.040
  248. Penagarikano, O., Lazaro, M. T., Lu, X. H., Gordon, A., Dong, H., Lam, H. A., Peles, E., Maidment, N. T., Murphy, N. P., Yang, X. W., Golshani, P. and Geschwind, D. H. (2015) Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci. Transl. Med. 7, 271ra8. https://doi.org/10.1126/scitranslmed.3010257
  249. Perry, E. K., Lee, M. L., Martin-Ruiz, C. M., Court, J. A., Volsen, S. G., Merrit, J., Folly, E., Iversen, P. E., Bauman, M. L., Perry, R. H. and Wenk, G. L. (2001) Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am. J. Psychiatry 158, 1058-1066. https://doi.org/10.1176/appi.ajp.158.7.1058
  250. Peters, S., Beaudet, A., Madduri, N. and Bacino, C. (2004) Autism in Angelman syndrome: implications for autism research. Clin. Genet. 66, 530-536. https://doi.org/10.1111/j.1399-0004.2004.00362.x
  251. Pierce, K. and Courchesne, E. (2001) Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol. Psychiatry 49, 655-664. https://doi.org/10.1016/S0006-3223(00)01008-8
  252. Pletnikov, M. V., Moran, T. H. and Carbone, K. M. (2002) Borna disease virus infection of the neonatal rat: developmental brain injury model of autism spectrum disorders. Front. Biosci. 7, d593-d607.
  253. Pletnikov, M. V., Rubin, S. A., Vasudevan, K., Moran, T. H. and Carbone, K. M. (1999) Developmental brain injury associated with abnormal play behavior in neonatally Borna disease virus-infected Lewis rats: a model of autism. Behav. Brain Res. 100, 43-50. https://doi.org/10.1016/S0166-4328(98)00111-9
  254. Pobbe, R. L., Pearson, B. L., Defensor, E. B., Bolivar, V. J., Young, W. S., 3rd, Lee, H. J., Blanchard, D. C. and Blanchard, R. J. (2012) Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors. Horm. Behav. 61, 436-444. https://doi.org/10.1016/j.yhbeh.2011.10.010
  255. Podhorna, J. and Didriksen, M. (2004) The heterozygous reeler mouse: behavioural phenotype. Behav. Brain Res. 153, 43-54. https://doi.org/10.1016/j.bbr.2003.10.033
  256. Poliak, S., Gollan, L., Martinez, R., Custer, A., Einheber, S., Salzer, J. L., Trimmer, J. S., Shrager, P. and Peles, E. (1999) Caspr2, a New Member of the Neurexin Superfamily, Is Localized at the Juxtaparanodes of Myelinated Axons and Associates with K+ Channels. Neuron 24, 1037-1047. https://doi.org/10.1016/S0896-6273(00)81049-1
  257. Popova, N. K., Vishnivetskaya, G. B., Ivanova, E. A., Skrinskaya, J. A. and Seif, I. (2000) Altered behavior and alcohol tolerance in transgenic mice lacking MAO A: a comparison with effects of MAO A inhibitor clorgyline. Pharmacol. Biochem. Behav. 67, 719-727. https://doi.org/10.1016/S0091-3057(00)00417-2
  258. Prasad, H. C., Steiner, J. A., Sutcliffe, J. S. and Blakely, R. D. (2009) Enhanced activity of human serotonin transporter variants associated with autism. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 364, 163-173. https://doi.org/10.1098/rstb.2008.0143
  259. Radyushkin, K., Hammerschmidt, K., Boretius, S., Varoqueaux, F., El- Kordi, A., Ronnenberg, A., Winter, D., Frahm, J., Fischer, J., Brose, N. and Ehrenreich, H. (2009) Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav. 8, 416-425. https://doi.org/10.1111/j.1601-183X.2009.00487.x
  260. Rasmussen, S. A. and Friedman, J. M. (2000) NF1 gene and neurofibromatosis 1. Am. J. Epidemiol. 151, 33-40. https://doi.org/10.1093/oxfordjournals.aje.a010118
  261. Reith, R. M., Way, S., McKenna, J., 3rd, Haines, K. and Gambello, M. J. (2011) Loss of the tuberous sclerosis complex protein tuberin causes Purkinje cell degeneration. Neurobiol. Dis. 43, 113-122. https://doi.org/10.1016/j.nbd.2011.02.014
  262. Rett, A. (1966) [On a unusual brain atrophy syndrome in hyperammonemia in childhood]. Wien. Med. Wochenschr. 116, 723-726.
  263. Richt, J. A., Pfeuffer, I., Christ, M., Frese, K., Bechter, K. and Herzog, S. (1997) Borna disease virus infection in animals and humans. Emerging Infect. Dis. 3, 343-352. https://doi.org/10.3201/eid0303.970311
  264. Rinaldi, T., Kulangara, K., Antoniello, K. and Markram, H. (2007) Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl. Acad. Sci. U.S.A. 104, 13501-13506. https://doi.org/10.1073/pnas.0704391104
  265. Rinaldi, T., Perrodin, C. and Markram, H. (2008) Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic Acid animal model of autism. Front. Neural Circuits 2, 4.
  266. Rios, M., Lambe, E. K., Liu, R., Teillon, S., Liu, J., Akbarian, S., Roffler- Tarlov, S., Jaenisch, R. and Aghajanian, G. K. (2006) Severe deficits in 5-HT2A -mediated neurotransmission in BDNF conditional mutant mice. J. Neurobiol. 66, 408-420. https://doi.org/10.1002/neu.20233
  267. Rogers, J. T., Rusiana, I., Trotter, J., Zhao, L., Donaldson, E., Pak, D. T., Babus, L. W., Peters, M., Banko, J. L., Chavis, P., Rebeck, G. W., Hoe, H. S. and Weeber, E. J. (2011) Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learn. Mem. 18, 558-564. https://doi.org/10.1101/lm.2153511
  268. Rogers, S. J., Hepburn, S. and Wehner, E. (2003) Parent reports of sensory symptoms in toddlers with autism and those with other developmental disorders. J. Autism Dev. Disord. 33, 631-642. https://doi.org/10.1023/B:JADD.0000006000.38991.a7
  269. Romero, E., Ali, C., Molina-Holgado, E., Castellano, B., Guaza, C. and Borrell, J. (2007) Neurobehavioral and immunological consequences of prenatal immune activation in rats. Influence of antipsychotics. Neuropsychopharmacology 32, 1791-1804. https://doi.org/10.1038/sj.npp.1301292
  270. Rout, U. K. and Dhossche, D. M. (2008) A pathogenetic model of autism involving Purkinje cell loss through anti-GAD antibodies. Med. Hypotheses 71, 218-221. https://doi.org/10.1016/j.mehy.2007.11.012
  271. Rutter, M., Caspi, A. and Moffitt, T. E. (2003) Using sex differences in psychopathology to study causal mechanisms: unifying issues and research strategies. J. Child Psychol. Psychiatry 44, 1092-1115. https://doi.org/10.1111/1469-7610.00194
  272. Sala, M., Braida, D., Lentini, D., Busnelli, M., Bulgheroni, E., Capurro, V., Finardi, A., Donzelli, A., Pattini, L., Rubino, T., Parolaro, D., Nishimori, K., Parenti, M. and Chini, B. (2011) Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol. Psychiatry 69, 875-882. https://doi.org/10.1016/j.biopsych.2010.12.022
  273. Salinger, W. L., Ladrow, P. and Wheeler, C. (2003) Behavioral phenotype of the reeler mutant mouse: effects of RELN gene dosage and social isolation. Behav. Neurosci. 117, 1257-1275. https://doi.org/10.1037/0735-7044.117.6.1257
  274. Samaco, R. C., Hogart, A. and LaSalle, J. M. (2005) Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum. Mol. Genet. 14, 483-492. https://doi.org/10.1093/hmg/ddi045
  275. Sampath, S., Bhat, S., Gupta, S., O'Connor, A., West, A. B., Arking, D. E. and Chakravarti, A. (2013) Defining the Contribution of CNTNAP2 to Autism Susceptibility. PLoS One 8, e77906. https://doi.org/10.1371/journal.pone.0077906
  276. Santini, E., Huynh, T. N., MacAskill, A. F., Carter, A. G., Pierre, P., Ruggero, D., Kaphzan, H. and Klann, E. (2013) Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493, 411-415.
  277. Sato, D., Lionel, A. C., Leblond, C. S., Prasad, A., Pinto, D., Walker, S., O'Connor, I., Russell, C., Drmic, I. E., Hamdan, F. F., Michaud, J. L., Endris, V., Roeth, R., Delorme, R., Huguet, G., Leboyer, M., Rastam, M., Gillberg, C., Lathrop, M., Stavropoulos, D. J., Anagnostou, E., Weksberg, R., Fombonne, E., Zwaigenbaum, L., Fernandez, B. A., Roberts, W., Rappold, G. A., Marshall, C. R., Bourgeron, T., Szatmari, P. and Scherer, S. W. (2012) SHANK1 Deletions in Males with Autism Spectrum Disorder. Am. J. Hum. Genet. 90, 879-887. https://doi.org/10.1016/j.ajhg.2012.03.017
  278. Savaskan, E., Ehrhardt, R., Schulz, A., Walter, M. and Schachinger, H. (2008) Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology 33, 368-374. https://doi.org/10.1016/j.psyneuen.2007.12.004
  279. Scattoni, M. L., McFarlane, H. G., Zhodzishsky, V., Caldwell, H. K., Young, W. S., Ricceri, L. and Crawley, J. N. (2008) Reduced ultrasonic vocalizations in vasopressin 1b knockout mice. Behav. Brain Res. 187, 371-378. https://doi.org/10.1016/j.bbr.2007.09.034
  280. Schaaf, C. P., Gonzalez-Garay, M. L., Xia, F., Potocki, L., Gripp, K. W., Zhang, B., Peters, B. A., McElwain, M. A., Drmanac, R., Beaudet, A. L., Caskey, C. T. and Yang, Y. (2013) Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat. Genet. 45, 1405-1408. https://doi.org/10.1038/ng.2776
  281. Schaller, F., Watrin, F., Sturny, R., Massacrier, A., Szepetowski, P. and Muscatelli, F. (2010) A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum. Mol. Genet. 19, 4895-4905. https://doi.org/10.1093/hmg/ddq424
  282. Schmale, H., Borowiak, B., Holtgreve-Grez, H. and Richter, D. (1989) Impact of altered protein structures on the intracellular traffic of a mutated vasopressin precursor from Brattleboro rats. Eur. J. Biochem. 182, 621-627. https://doi.org/10.1111/j.1432-1033.1989.tb14871.x
  283. Schmeisser, M. J., Ey, E., Wegener, S., Bockmann, J., Stempel, A. V., Kuebler, A., Janssen, A.-L., Udvardi, P. T., Shiban, E., Spilker, C., Balschun, D., Skryabin, B. V., Dieck, S. t., Smalla, K. H., Montag, D., Leblond, C. S., Faure, P., Torquet, N., Le Sourd, A. M., Toro, R., Grabrucker, A. M., Shoichet, S. A., Schmitz, D., Kreutz, M. R., Bourgeron, T., Gundelfinger, E. D. and Boeckers, T. M. (2012) Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/ Shank2. Nature 486, 256-260. https://doi.org/10.1038/nature11015
  284. Schneider, M. and Koch, M. (2005) Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: effects of chronic pubertal cannabinoid treatment. Neuropsychopharmacology 30, 944-957. https://doi.org/10.1038/sj.npp.1300634
  285. Schneider, T., Roman, A., Basta-Kaim, A., Kubera, M., Budziszewska, B., Schneider, K. and Przewlocki, R. (2008) Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33, 728-740. https://doi.org/10.1016/j.psyneuen.2008.02.011
  286. Schreck, K. A., Mulick, J. A. and Smith, A. F. (2004) Sleep problems as possible predictors of intensified symptoms of autism. Res. Dev. Disabil. 25, 57-66. https://doi.org/10.1016/j.ridd.2003.04.007
  287. Schumann, C. M., Hamstra, J., Goodlin-Jones, B. L., Lotspeich, L. J., Kwon, H., Buonocore, M. H., Lammers, C. R., Reiss, A. L. and Amaral, D. G. (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J. Neurosci. 24, 6392-6401. https://doi.org/10.1523/JNEUROSCI.1297-04.2004
  288. Scott-Van Zeeland, A. A., Abrahams, B. S., Alvarez-Retuerto, A. I., Sonnenblick, L. I., Rudie, J. D., Ghahremani, D., Mumford, J. A., Poldrack, R. A., Dapretto, M., Geschwind, D. H. and Bookheimer, S. Y. (2010) Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Sci. Transl. Med. 2, 56ra80.
  289. Shinohe, A., Hashimoto, K., Nakamura, K., Tsujii, M., Iwata, Y., Tsuchiya, K. J., Sekine, Y., Suda, S., Suzuki, K., Sugihara, G., Matsuzaki, H., Minabe, Y., Sugiyama, T., Kawai, M., Iyo, M., Takei, N. and Mori, N. (2006) Increased serum levels of glutamate in adult patients with autism. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 1472-1477. https://doi.org/10.1016/j.pnpbp.2006.06.013
  290. Silva, A. J. and Ehninger, D. (2009) Adult reversal of cognitive phenotypes in neurodevelopmental disorders. J. Neurodev. Disord. 1, 150-157. https://doi.org/10.1007/s11689-009-9018-7
  291. Silva, A. J., Frankland, P. W., Marowitz, Z., Friedman, E., Laszlo, G. S., Cioffi, D., Jacks, T. and Bourtchuladze, R. (1997) A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat. Genet. 15, 281-284. https://doi.org/10.1038/ng0397-281
  292. Silverman, J. L., Tolu, S. S., Barkan, C. L. and Crawley, J. N. (2010) Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 35, 976-989. https://doi.org/10.1038/npp.2009.201
  293. Silverman, J. L., Turner, S. M., Barkan, C. L., Tolu, S. S., Saxena, R., Hung, A. Y., Sheng, M. and Crawley, J. N. (2011) Sociability and motor functions in Shank1 mutant mice. Brain Res. 1380, 120-137. https://doi.org/10.1016/j.brainres.2010.09.026
  294. Singh, C., Bortolato, M., Bali, N., Godar, S. C., Scott, A. L., Chen, K., Thompson, R. F. and Shih, J. C. (2013) Cognitive abnormalities and hippocampal alterations in monoamine oxidase A and B knockout mice. Proc. Natl. Acad. Sci. U.S.A. 110, 12816-12821. https://doi.org/10.1073/pnas.1308037110
  295. Singh, N. N., Lancioni, G. E., Winton, A. S., Fisher, B. C., Wahler, R. G., Mcaleavey, K., Singh, J. and Sabaawi, M. (2006) Mindful parenting decreases aggression, noncompliance, and self-injury in children with autism. J. Emot. Behav. Disord. 14, 169-177. https://doi.org/10.1177/10634266060140030401
  296. Sinkkonen, S. T., Homanics, G. E. and Korpi, E. R. (2003) Mouse models of Angelman syndrome, a neurodevelopmental disorder, display different brain regional GABA(A) receptor alterations. Neurosci. Lett. 340, 205-208. https://doi.org/10.1016/S0304-3940(03)00123-X
  297. Skidmore, B. J., Chiller, J. M., Morrison, D. C. and Weigle, W. O. (1975) Immunologic properties of bacterial lipopolysaccharide (LPS): correlation between the mitogenic, adjuvant, and immunogenic activities. J. Immunol. 114, 770-775.
  298. Smalheiser, N. R., Costa, E., Guidotti, A., Impagnatiello, F., Auta, J., Lacor, P., Kriho, V. and Pappas, G. D. (2000) Expression of reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. Proc. Natl. Acad. Sci. U.S.A. 97, 1281-1286. https://doi.org/10.1073/pnas.97.3.1281
  299. Smith, S. E., Li, J., Garbett, K., Mirnics, K. and Patterson, P. H. (2007) Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27, 10695-10702. https://doi.org/10.1523/JNEUROSCI.2178-07.2007
  300. Smith, S. E., Zhou, Y. D., Zhang, G., Jin, Z., Stoppel, D. C. and Anderson, M. P. (2011) Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci. Transl. Med. 3, 103ra97.
  301. Spence, S. J. and Schneider, M. T. (2009) The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatr. Res. 65, 599-606. https://doi.org/10.1203/PDR.0b013e31819e7168
  302. Spencer, C. M., Alekseyenko, O., Serysheva, E., Yuva-Paylor, L. A. and Paylor, R. (2005) Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav. 4, 420-430. https://doi.org/10.1111/j.1601-183X.2005.00123.x
  303. Stanfield, B. B. and Cowan, W. M. (1979) The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J. Comp. Neurol. 185, 393-422. https://doi.org/10.1002/cne.901850302
  304. Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I. C., Jakobsson, G. and Bohman, M. (1989) A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J. Child Psychol. Psychiatry 30, 405-416. https://doi.org/10.1111/j.1469-7610.1989.tb00254.x
  305. Stephenson, D. T., O'Neill, S. M., Narayan, S., Tiwari, A., Arnold, E., Samaroo, H. D., Du, F., Ring, R. H., Campbell, B., Pletcher, M., Vaidya, V. A. and Morton, D. (2011) Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis. Mol. Autism 2, 7. https://doi.org/10.1186/2040-2392-2-7
  306. Strang, J. F., Kenworthy, L., Daniolos, P., Case, L., Wills, M. C., Martin, A. and Wallace, G. L. (2012) Depression and Anxiety Symptoms in Children and Adolescents with Autism Spectrum Disorders without Intellectual Disability. Res. Autism Spectr. Disord. 6, 406-412. https://doi.org/10.1016/j.rasd.2011.06.015
  307. Strauss, K. A., Puffenberger, E. G., Huentelman, M. J., Gottlieb, S., Dobrin, S. E., Parod, J. M., Stephan, D. A. and Morton, D. H. (2006) Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N. Engl. J. Med. 354, 1370-1377. https://doi.org/10.1056/NEJMoa052773
  308. Stromland, K., Philipson, E. and Andersson Gronlund, M. (2002) Offspring of male and female parents with thalidomide embryopathy: birth defects and functional anomalies. Teratology 66, 115-121. https://doi.org/10.1002/tera.10083
  309. Sudhof, T. C. (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903-911. https://doi.org/10.1038/nature07456
  310. Szatmari, P., Maziade, M., Zwaigenbaum, L., Merette, C., Roy, M. A., Joober, R. and Palmour, R. (2007) Informative phenotypes for genetic studies of psychiatric disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B, 581-588. https://doi.org/10.1002/ajmg.b.30426
  311. Taieb, O., Baleyte, J. M., Mazet, P. and Fillet, A. M. (2001) Borna disease virus and psychiatry. Eur. Psychiatry 16, 3-10.
  312. Tang, G., Gudsnuk, K., Kuo, S.-H., Cotrina, M. L., Rosoklija, G., Sosunov, A., Sonders, M. S., Kanter, E., Castagna, C., Yamamoto, A., Yue, Z., Arancio, O., Peterson, B. S., Champagne, F., Dwork, A. J., Goldman, J. and Sulzer, D. (2014) Loss of mTOR-Dependent Macroautophagy Causes Autistic-like Synaptic Pruning Deficits. Neuron 83, 1131-1143. https://doi.org/10.1016/j.neuron.2014.07.040
  313. Tansey, K. E., Brookes, K. J., Hill, M. J., Cochrane, L. E., Gill, M., Skuse, D., Correia, C., Vicente, A., Kent, L., Gallagher, L. and Anney, R. J. (2010) Oxytocin receptor (OXTR) does not play a major role in the aetiology of autism: genetic and molecular studies. Neurosci. Lett. 474, 163-167. https://doi.org/10.1016/j.neulet.2010.03.035
  314. Taurines, R., Segura, M., Schecklmann, M., Albantakis, L., Grunblatt, E., Walitza, S., Jans, T., Lyttwin, B., Haberhausen, M., Theisen, F. M., Martin, B., Briegel, W., Thome, J., Schwenck, C., Romanos, M. and Gerlach, M. (2014) Altered peripheral BDNF mRNA expression and BDNF protein concentrations in blood of children and adolescents with autism spectrum disorder. J. Neural Transm. (Vienna) 121, 1117-1128. https://doi.org/10.1007/s00702-014-1162-x
  315. Tavassoli, T., Auyeung, B., Murphy, L. C., Baron-Cohen, S. and Chakrabarti, B. (2012) Variation in the autism candidate gene GABRB3 modulates tactile sensitivity in typically developing children. Mol. Autism 3, 6. https://doi.org/10.1186/2040-2392-3-6
  316. The International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455, 237-241. https://doi.org/10.1038/nature07239
  317. Tierney, E., Bukelis, I., Thompson, R. E., Ahmed, K., Aneja, A., Kratz, L. and Kelley, R. I. (2006) Abnormalities of cholesterol metabolism in autism spectrum disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141B, 666-668. https://doi.org/10.1002/ajmg.b.30368
  318. Tierney, E., Nwokoro, N. A. and Kelley, R. I. (2000) Behavioral phenotype of RSH/Smith-Lemli-Opitz syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 6, 131-134. https://doi.org/10.1002/1098-2779(2000)6:2<131::AID-MRDD7>3.0.CO;2-R
  319. Tottenham, N., Hertzig, M. E., Gillespie-Lynch, K., Gilhooly, T., Millner, A. J. and Casey, B. (2014) Elevated amygdala response to faces and gaze aversion in autism spectrum disorder. Soc. Cogn. Affect. Neurosci. 9, 106-117. https://doi.org/10.1093/scan/nst050
  320. Truong, D. T., Rendall, A. R., Castelluccio, B. C., Eigsti, I. M. and Fitch, R. H. (2015) Auditory processing and morphological anomalies in medial geniculate nucleus of Cntnap2 mutant mice. Behav. Neurosci. 129, 731-743. https://doi.org/10.1037/bne0000096
  321. Tsai, P. T., Chu, Y., Greene-Colozzi, E., Sadowski, A. R., Leech, J. M., Steinberg, J., Crawley, J. N., Regehr, W. G. and Sahin, M. (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488, 647-651. https://doi.org/10.1038/nature11310
  322. Tsai, S. J. (2005) Is autism caused by early hyperactivity of brain-derived neurotrophic factor? Med. Hypotheses 65, 79-82. https://doi.org/10.1016/j.mehy.2005.01.034
  323. Tueting, P., Costa, E., Dwivedi, Y., Guidotti, A., Impagnatiello, F., Manev, R. and Pesold, C. (1999) The phenotypic characteristics of heterozygous reeler mouse. Neuroreport 10, 1329-1334. https://doi.org/10.1097/00001756-199904260-00032
  324. Turrigiano, G. (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 4, a005736.
  325. Tyzio, R., Nardou, R., Ferrari, D. C., Tsintsadze, T., Shahrokhi, A., Eftekhari, S., Khalilov, I., Tsintsadze, V., Brouchoud, C., Chazal, G., Lemonnier, E., Lozovaya, N., Burnashev, N. and Ben-Ari, Y. (2014) Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 343, 675-679. https://doi.org/10.1126/science.1247190
  326. Uhlmann, E. J., Wong, M., Baldwin, R. L., Bajenaru, M. L., Onda, H., Kwiatkowski, D. J., Yamada, K. and Gutmann, D. H. (2002) Astrocyte- specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann. Neurol. 52, 285-296. https://doi.org/10.1002/ana.10283
  327. Veenstra-Vanderweele, J., Jessen, T. N., Thompson, B. J., Carter, M., Prasad, H. C., Steiner, J. A., Sutcliffe, J. S. and Blakely, R. D. (2009) Modeling rare gene variation to gain insight into the oldest biomarker in autism: construction of the serotonin transporter Gly56Ala knock-in mouse. J. Neurodev. Disord. 1, 158-171. https://doi.org/10.1007/s11689-009-9020-0
  328. Verheij, C., Bakker, C. E., de Graaff, E., Keulemans, J., Willemsen, R., Verkerk, A. J., Galjaard, H., Reuser, A. J., Hoogeveen, A. T. and Oostra, B. A. (1993) Characterization and localization of the FMR-1 gene product associated with fragile X syndrome. Nature 363, 722-724. https://doi.org/10.1038/363722a0
  329. Verpelli, C., Dvoretskova, E., Vicidomini, C., Rossi, F., Chiappalone, M., Schoen, M., Di Stefano, B., Mantegazza, R., Broccoli, V., Bockers, T. M., Dityatev, A. and Sala, C. (2011) Importance of Shank3 protein in regulating metabotropic glutamate receptor 5 (mGluR5) expression and signaling at synapses. J. Biol. Chem. 286, 34839-34850. https://doi.org/10.1074/jbc.M111.258384
  330. Volkmar, F. R. and Nelson, D. S. (1990) Seizure Disorders in Autism. J. Am. Acad. Child Adolesc. Psychiatry 29, 127-129. https://doi.org/10.1097/00004583-199001000-00020
  331. Waage-Baudet, H., Lauder, J. M., Dehart, D. B., Kluckman, K., Hiller, S., Tint, G. S. and Sulik, K. K. (2003) Abnormal serotonergic development in a mouse model for the Smith-Lemli-Opitz syndrome: implications for autism. Int. J. Dev. Neurosci. 21, 451-459. https://doi.org/10.1016/j.ijdevneu.2003.09.002
  332. Wagstaff, J., Knoll, J. H., Fleming, J., Kirkness, E. F., Martin-Gallardo, A., Greenberg, F., Graham, J. M., Jr., Menninger, J., Ward, D., Venter, J. C. and Lalande, M. (1991) Localization of the gene encoding the GABAA receptor beta 3 subunit to the Angelman/Prader-Willi region of human chromosome 15. Am. J. Hum. Genet. 49, 330-337.
  333. Wahlsten, D., Metten, P. and Crabbe, J. C. (2003) Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T/+ tf/tf has severely reduced hippocampal commissure and absent corpus callosum. Brain Res. 971, 47-54. https://doi.org/10.1016/S0006-8993(03)02354-0
  334. Walcott, E. C., Higgins, E. A. and Desai, N. S. (2011) Synaptic and intrinsic balancing during postnatal development in rat pups exposed to valproic acid in utero. J. Neurosci. 31, 13097-13109. https://doi.org/10.1523/JNEUROSCI.1341-11.2011
  335. Walsh, T., McClellan, J. M., McCarthy, S. E., Addington, A. M., Pierce, S. B., Cooper, G. M., Nord, A. S., Kusenda, M., Malhotra, D., Bhandari, A., Stray, S. M., Rippey, C. F., Roccanova, P., Makarov, V., Lakshmi, B., Findling, R. L., Sikich, L., Stromberg, T., Merriman, B., Gogtay, N., Butler, P., Eckstrand, K., Noory, L., Gochman, P., Long, R., Chen, Z., Davis, S., Baker, C., Eichler, E. E., Meltzer, P. S., Nelson, S. F., Singleton, A. B., Lee, M. K., Rapoport, J. L., King, M. C. and Sebat, J. (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539-543. https://doi.org/10.1126/science.1155174
  336. Wang, H., Meng, X. H., Ning, H., Zhao, X. F., Wang, Q., Liu, P., Zhang, H., Zhang, C., Chen, G. H. and Xu, D. X. (2010) Age- and genderdependent impairments of neurobehaviors in mice whose mothers were exposed to lipopolysaccharide during pregnancy. Toxicol. Lett. 192, 245-251. https://doi.org/10.1016/j.toxlet.2009.10.030
  337. Wang, S. S., Kloth, A. D. and Badura, A. (2014) The Cerebellum, Sensitive Periods, and Autism. Neuron 83, 518-532. https://doi.org/10.1016/j.neuron.2014.07.016
  338. Warrier, V., Baron-Cohen, S. and Chakrabarti, B. (2013) Genetic variation in GABRB3 is associated with Asperger syndrome and multiple endophenotypes relevant to autism. Mol. Autism 4, 48. https://doi.org/10.1186/2040-2392-4-48
  339. Wassink, T. H., Piven, J., Vieland, V. J., Pietila, J., Goedken, R. J., Folstein, S. E. and Sheffield, V. C. (2004) Examination of AVPR1a as an autism susceptibility gene. Mol. Psychiatry 9, 968-972. https://doi.org/10.1038/sj.mp.4001503
  340. Weidner, K. L., Buenaventura, D. F. and Chadman, K. K. (2014) Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age. Behav. Brain Res. 268, 222-228. https://doi.org/10.1016/j.bbr.2014.04.025
  341. Weiler, I. J., Irwin, S. A., Klintsova, A. Y., Spencer, C. M., Brazelton, A. D., Miyashiro, K., Comery, T. A., Patel, B., Eberwine, J. and Greenough, W. T. (1997) Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl. Acad. Sci. U.S.A. 94, 5395-5400. https://doi.org/10.1073/pnas.94.10.5395
  342. Wersinger, S. R., Kelliher, K. R., Zufall, F., Lolait, S. J., O'Carroll, A. M. and Young, W. S., 3rd (2004) Social motivation is reduced in vasopressin 1b receptor null mice despite normal performance in an olfactory discrimination task. Horm. Behav. 46, 638-645. https://doi.org/10.1016/j.yhbeh.2004.07.004
  343. Whitehouse, A. J., Bishop, D. V., Ang, Q., Pennell, C. E. and Fisher, S. E. (2011) CNTNAP2 variants affect early language development in the general population. Genes Brain and Behav. 10, 451-456. https://doi.org/10.1111/j.1601-183X.2011.00684.x
  344. Winslow, J. T. and Insel, T. R. (2002) The social deficits of the oxytocin knockout mouse. Neuropeptides 36, 221-229. https://doi.org/10.1054/npep.2002.0909
  345. Wohr, M., Roullet, F. I. and Crawley, J. N. (2011a) Reduced scent marking and ultrasonic vocalizations in the BTBR T+tf/J mouse model of autism. Genes Brain Behav. 10, 35-43. https://doi.org/10.1111/j.1601-183X.2010.00582.x
  346. Wohr, M., Roullet, F. I., Hung, A. Y., Sheng, M. and Crawley, J. N. (2011b) Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior. PLoS One 6, e20631. https://doi.org/10.1371/journal.pone.0020631
  347. Wolterink, G., Daenen, L. E., Dubbeldam, S., Gerrits, M. A., van Rijn, R., Kruse, C. G., Van Der Heijden, J. A. and Van Ree, J. M. (2001) Early amygdala damage in the rat as a model for neurodevelopmental psychopathological disorders. Eur. Neuropsychopharmacol. 11, 51-59. https://doi.org/10.1016/S0924-977X(00)00138-3
  348. Won, H., Lee, H. R., Gee, H. Y., Mah, W., Kim, J. I., Lee, J., Ha, S., Chung, C., Jung, E. S., Cho, Y. S., Park, S. G., Lee, J. S., Lee, K., Kim, D., Bae, Y. C., Kaang, B. K., Lee, M. G. and Kim, E. (2012) Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486, 261-265. https://doi.org/10.1038/nature11208
  349. Wu, S., Jia, M., Ruan, Y., Liu, J., Guo, Y., Shuang, M., Gong, X., Zhang, Y., Yang, X. and Zhang, D. (2005) Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol. Psychiatry 58, 74-77. https://doi.org/10.1016/j.biopsych.2005.03.013
  350. Yamashita, Y., Fujimoto, C., Nakajima, E., Isagai, T. and Matsuishi, T. (2003) Possible association between congenital cytomegalovirus infection and autistic disorder. J. Autism Dev. Disord. 33, 455-459. https://doi.org/10.1023/A:1025023131029
  351. Yamauchi, J., Miyamoto, Y., Kusakawa, S., Torii, T., Mizutani, R., Sanbe, A., Nakajima, H., Kiyokawa, N. and Tanoue, A. (2008) Neurofibromatosis 2 tumor suppressor, the gene induced by valproic acid, mediates neurite outgrowth through interaction with paxillin. Exp. Cell Res. 314, 2279-2288. https://doi.org/10.1016/j.yexcr.2008.03.019
  352. Yan, W. L., Guan, X. Y., Green, E. D., Nicolson, R., Yap, T. K., Zhang, J., Jacobsen, L. K., Krasnewich, D. M., Kumra, S., Lenane, M. C., Gochman, P., Damschroder-Williams, P. J., Esterling, L. E., Long, R. T., Martin, B. M., Sidransky, E., Rapoport, J. L. and Ginns, E. I. (2000) Childhood-onset schizophrenia/autistic disorder and t(1;7) reciprocal translocation: identification of a BAC contig spanning the translocation breakpoint at 7q21. Am. J. Med. Genet. 96, 749-753. https://doi.org/10.1002/1096-8628(20001204)96:6<749::AID-AJMG10>3.0.CO;2-K
  353. Yang, M., Bozdagi, O., Scattoni, M. L., Wöhr, M., Roullet, F. I., Katz, A. M., Abrams, D. N., Kalikhman, D., Simon, H., Woldeyohannes, L., Zhang, J. Y., Harris, M. J., Saxena, R., Silverman, J. L., Buxbaum, J. D. and Crawley, J. N. (2012) Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J. Neurosci. 32, 6525-6541. https://doi.org/10.1523/JNEUROSCI.6107-11.2012
  354. Yasui, D. H., Peddada, S., Bieda, M. C., Vallero, R. O., Hogart, A., Nagarajan, R. P., Thatcher, K. N., Farnham, P. J. and Lasalle, J. M. (2007) Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc. Natl. Acad. Sci. U.S.A. 104, 19416-19421. https://doi.org/10.1073/pnas.0707442104
  355. Yip, J. W., Yip, Y. P., Nakajima, K. and Capriotti, C. (2000) Reelin controls position of autonomic neurons in the spinal cord. Proc. Natl. Acad. Sci. U.S.A. 97, 8612-8616. https://doi.org/10.1073/pnas.150040497
  356. Yirmiya, N., Rosenberg, C., Levi, S., Salomon, S., Shulman, C., Nemanov, L., Dina, C. and Ebstein, R. P. (2006) Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: mediation by socialization skills. Mol. Psychiatry 11, 488-494. https://doi.org/10.1038/sj.mp.4001812
  357. Ylisaukko-oja, T., Rehnström, K., Auranen, M., Vanhala, R., Alen, R., Kempas, E., Ellonen, P., Turunen, J. A., Makkonen, I., Riikonen, R., Nieminen-von Wendt, T., von Wendt, L., Peltonen, L. and Jarvela, I. (2005) Analysis of four neuroligin genes as candidates for autism. Eur. J. Hum. Genet. 13, 1285-1292. https://doi.org/10.1038/sj.ejhg.5201474
  358. Young, D. M., Schenk, A. K., Yang, S. B., Jan, Y. N. and Jan, L. Y. (2010) Altered ultrasonic vocalizations in a tuberous sclerosis mouse model of autism. Proc. Natl. Acad. Sci. U.S.A. 107, 11074-11079. https://doi.org/10.1073/pnas.1005620107
  359. Zec, N., Rowitch, D. H., Bitgood, M. J. and Kinney, H. C. (1997) Expression of the homeobox-containing genes EN1 and EN2 in human fetal midgestational medulla and cerebellum. J. Neuropathol. Exp. Neurol. 56, 236-242. https://doi.org/10.1097/00005072-199703000-00002
  360. Zhang, J., Hou, L., Klann, E. and Nelson, D. L. (2009) Altered hippocampal synaptic plasticity in the FMR1 gene family knockout mouse models. J. Neurophysiol. 101, 2572-2580. https://doi.org/10.1152/jn.90558.2008
  361. Zhong, H., Serajee, F. J., Nabi, R. and Huq, A. H. (2003) No association between the EN2 gene and autistic disorder. J. Med. Genet. 40, e4. https://doi.org/10.1136/jmg.40.1.e4
  362. Zhou, J. and Parada, L. F. (2012) PTEN signaling in autism spectrum disorders. Curr. Opin. Neurobiol. 22, 873-879. https://doi.org/10.1016/j.conb.2012.05.004

Cited by

  1. Effects of ω-3 fatty acids on stereotypical behavior and social interactions in Wistar rats prenatally exposed to lipopolysaccarides vol.35, 2017, https://doi.org/10.1016/j.nut.2016.10.019
  2. Echoes of the association between autism and epilepsy: A long translational research explanation vol.62, 2016, https://doi.org/10.1016/j.yebeh.2016.05.031
  3. Anti-inflammatory mechanism of lonchocarpine in LPS- or poly(I:C)-induced neuroinflammation vol.119, 2017, https://doi.org/10.1016/j.phrs.2017.02.027
  4. The Endocannabinoid System and Autism Spectrum Disorders: Insights from Animal Models vol.18, pp.9, 2017, https://doi.org/10.3390/ijms18091916
  5. Evidence for Brainstem Contributions to Autism Spectrum Disorders vol.12, pp.1662-5145, 2018, https://doi.org/10.3389/fnint.2018.00047
  6. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors vol.55, pp.7, 2018, https://doi.org/10.1007/s12035-017-0770-5
  7. Kami-shoyo-san improves ASD-like behaviors caused by decreasing allopregnanolone biosynthesis in an SKF mouse model of autism vol.14, pp.1, 2019, https://doi.org/10.1371/journal.pone.0211266
  8. Changes in the Fluorescence Tracking of NaV1.6 Protein Expression in a BTBR T+Itpr3tf/J Autistic Mouse Model vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/4893103
  9. Cannabidivarin Treatment Ameliorates Autism-Like Behaviors and Restores Hippocampal Endocannabinoid System and Glia Alterations Induced by Prenatal Valproic Acid Exposure in Rats vol.13, pp.None, 2019, https://doi.org/10.3389/fncel.2019.00367
  10. Opposite Expression Patterns of Spry3 and p75NTR in Cerebellar Vermis Suggest a Male-Specific Mechanism of Autism Pathogenesis vol.10, pp.None, 2016, https://doi.org/10.3389/fpsyt.2019.00416
  11. Language processing skills linked to FMR1 variation: A study of gaze-language coordination during rapid automatized naming among women with the FMR1 premutation vol.14, pp.7, 2016, https://doi.org/10.1371/journal.pone.0219924
  12. The Developing Brain as a Target for Experimental Treatments in Modeling Pathological Processes vol.50, pp.5, 2020, https://doi.org/10.1007/s11055-020-00936-9
  13. Effects of Prenatal and Early Postnatal Administration of Valproate on Behavior and Cyhtological Characteristics in Wistar Rats vol.51, pp.5, 2016, https://doi.org/10.1007/s11055-021-01117-y
  14. Metabolomics profiling of valproic acid-induced symptoms resembling autism spectrum disorders using 1H NMR spectral analysis in rat model vol.85, pp.1, 2016, https://doi.org/10.1080/15287394.2021.1967821