References
- Andersen, T. G. and Bollerslev, T. (1997). Intraday periodicity and volatility persistence in financial markets, Journal of Empirical Finance, 4, 115-158. https://doi.org/10.1016/S0927-5398(97)00004-2
- Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modelling and forecasting realized volatility, Econometrics, 71, 579-625. https://doi.org/10.1111/1468-0262.00418
- Cho, S., Kim, D., and Shin, D. W. (2016). Comparison of realized volatilities reflecting overnight returns, Korean Journal of Applied Statistics, 29, 85-98. https://doi.org/10.5351/KJAS.2016.29.1.085
- Hansen, P. R. and Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a GARCH (1, 1)?, Journal of Applied Econometrics, 20, 873-889. https://doi.org/10.1002/jae.800
- Martens, M. (2002). Measuring and forecasting S&P 500 index-futures volatility using high-frequency data, Journal of Futures Markets, 22, 497-518. https://doi.org/10.1002/fut.10016
- Patton, A. and Sheppard, K. (2009). Evaluating volatility forecasts, in Handbook of Financial Time Series, (Eds) T.G. Anderson, R.A. Davis, J.P. Kreiss and T. Mikosch, Springer-Verlag, Heidelberg, Germany, 801-838.
- Tsay, R. S. (2010). Analysis of Financial Time Series, 3rd edition, John Wiley & Sons.
- Xiao, L. (2013). Realized volatility forecasting: empirical evidence from stock market indices and exchange rates, Applied Financial Economics, 23, 57-69. https://doi.org/10.1080/09603107.2012.707769
- Yoon, J. E. and Hwang, S. Y. (2015). Volatility computations for financial time series: high frequency and hybrid method, Korean Journal of Applied Statistics, 28, 1163-1170. https://doi.org/10.5351/KJAS.2015.28.6.1163