DOI QR코드

DOI QR Code

Study of the Olefin Adhesion Layer Produced by Melt-blowing LDPE

멜트블론을 이용한 올레핀계 접착층의 특성에 관한 연구

  • Kim, Chang Hun (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Choi, Se Jin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Hyun Seok (Korea Textile Development Institute) ;
  • Kim, Han Seong (Department of Organic Material Science and Engineering, Pusan National University)
  • 김창훈 (부산대학교 유기소재시스템공학과) ;
  • 최세진 (부산대학교 유기소재시스템공학과) ;
  • 이현석 (한국섬유개발연구원) ;
  • 김한성 (부산대학교 유기소재시스템공학과)
  • Received : 2015.12.31
  • Accepted : 2016.03.07
  • Published : 2016.04.30

Abstract

This study investigated the interrelationships between some properties of low-density polyethylene (LDPE) web fibers produced by the melt-blown technique. Variations in the LDPE fiber's diameter and uniformity were correlated against variations in throughput pressure, hot air pressure, and nozzle temperature. The bond strength of the LDPE web adhesion layer was found to be lower than that of LDPE film. However, the LDPE web adhesion layer's air permeability was found to be significantly higher than - as much as 260 times higher - that of LDPE film. The results suggest that melt-blown LDPE web fibers are useful for producing multi-function products.

Keywords

References

  1. S. B. Gwak and S. R. Lee, “The Technology of Lightweight Interior Parts in Automotive with Uni-material & Process”, Journal of the Korean Society of Automotive Engineers, 2011, 33, 39-47. https://doi.org/10.4491/KSEE.2011.33.1.039
  2. J. S. Shin, J. M. Park, Y. H. Lee, and H. D. Kim, “Preparation and Properties of Eco-friendly Waterborne Polyurethane-urea Primer for Thermoplastic Polypropylene Applied to Automobile Interiors”, Clean Technology, 2014, 20, 232-240. https://doi.org/10.7464/ksct.2014.20.3.232
  3. V. A. Wente, "Superfine Thermoplastic Fibers", J. Ind. Eng. Chem., 1956, 48, 1342-1346. https://doi.org/10.1021/ie50560a034
  4. D. Lohkamp and J. Prentice, "Nonwoven Mats of Thermoplastic Blends by Melt Blowing", US Patents, 3841953(1974).
  5. E. R. Hauser, "Web of Blended Microfibers and Crimped Bulking Fibers", US Patents, 4118531(1977).
  6. R. A. Anderson, R. C. Sokolowski, and K. W. Ostermeier, "Nonwoven Fabric and Method of Producing Same", US Patents, 4100324(1976).
  7. C. H. Lee, "Manufacturing Technology of Composite Spinning Melt-blown Nonwoven Fabric", Fiber Technol. Ind., 2008, 12, 81-87.
  8. C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates, “Melt Blown Nanofibers; Fiber Diameter Distributions and Onset of Fiber Breakup”, Polymer, 2007, 48, 3306-3316. https://doi.org/10.1016/j.polymer.2007.04.005
  9. S. C. Chung, B. G. Ahn, and S. S. Im, "Effect of Melt Blown Processing Conditions on the Filtration Characteristics of Polypropylene (PP) Cartridge Filter", J. Korean Ind. Eng. Chem., 2002, 13, 613-618.
  10. H. S. Shin, L. Jin, and J. H. Yoo, “Effect of Manufacturing Conditions on the Properties of Oil-absorbable Melt Blown Nonwoven”, J. Korean Soc. Dyers Finishers, 2009, 21, 22-28.
  11. Y. Tian, H. Gao, J. Wang, X. Jin, and H. Wang, “Preparation of Hydroentangled CMC Composite Nonwoven Fabrics as High Performance Separator for Nickel Metal Hydride Battery”, Electrochimica Acta, 2015, 177, 321-326. https://doi.org/10.1016/j.electacta.2015.03.165
  12. I. Krucinska, B. Surma, M. Chrzanowski, E. Skrzetuska, and M. Puchalski, "Application of Melt-blown Technology for the Manufacture of Temperature-Sensitive Nonwoven Fabrics Composed of Polymer Blends PP/PCL Loaded with Multiwall Carbon Nanotubes", J. Appl. Polym. Sci., 2013, 127, 869-878. https://doi.org/10.1002/app.37834
  13. C. H. Lee, J. H. Lee, E. H. Kwon, K. J. Lee, E. J. Son, and S. H. Kim, "Performance of a Plat-Type Enthalpy Exchanger Made of Melt Blown Nonwovens(II)-Characteristics of Polypropylene and Nylon Melt Blown Nonwovens", Text. Sci. Eng., 2010, 47, 371-377.
  14. J. Zhao, C. Xiao, and N. Xu, "Evaluation of Polypropylene and Poly(butylmethacrylate-co-hydroxyethylmethacrylate) Nonwoven Material as Oil Absorbent", Environ. Sci. Pollut. Res., 2013, 20, 4137-4145. https://doi.org/10.1007/s11356-012-1397-8
  15. S. Guo, Q. Ke, H. Wang, X. Jin, and Y. Li, "Poly(butylene terephthalate) Electrospun/Melt-blown Composite Mats for White Blood Cell Filtration", J. Appl. Polym. Sci., 2013, 128, 3652-3659. https://doi.org/10.1002/app.38423
  16. H. W. No, M. J. Yun, K. S. Cho, and H. S. Kim, "Development of Fiber Orientation Distribution in 3-dimentional Nonwovens by Using Compressed Air", Text. Sci. Eng., 2010, 47, 326-332.
  17. S. Sinha-Ray, A. L. Yarin, and B. Pourdeyhimi, "Prediction of Angular and Mass Distribution in Meltblown Polymer Lay-down", Polymer, 2013, 54, 850-872.
  18. B. Pourdeyhimi and L. Kohel, "Area-Based Strategy for Determining Web Uniformity", Text. Res. J., 2002, 72, 1065-1072. https://doi.org/10.1177/004051750207201205
  19. B. Pourdeyhimi, R. Dent, and H. Davis, "Measuring Fiber Orientation in Nonwovens, Part 3: Fourier Transform", Text. Res. J., 1997, 67, 143-151. https://doi.org/10.1177/004051759706700211
  20. H. S. Kim, B. Pourdeyhimi, A. S. Abhiraman, and P. Desai, "Effect of Bonding Temperature on Load-Deformation Strctural Changes in Point-Bonded Nonwoven Fabrics", Text. Res. J., 2002, 72, 645-653. https://doi.org/10.1177/004051750207200713