DOI QR코드

DOI QR Code

Effect of Diet Containing Whole Wheat Bread with Capsosiphon fulvescens and Lindera obtusiloba Ethanol Extracts on Plasma Glucose and Lipid Levels in Rats

매생이와 생강나무잎 에탄올 추출물이 첨가된 통밀빵을 섭취한 랫트의 혈당과 지질수준에 미치는 영향

  • Han, Ah-Ram (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Se-Wook (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Chun, Su-Hyun (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Nam, Mi-Hyun (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Hong, Chung-Oui (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Bok Hee (CJ Foodville Bakery R&D) ;
  • Kim, Tae Cheol (CJ Foodville Bakery R&D) ;
  • Lee, Kwang-Won (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • Received : 2016.02.15
  • Accepted : 2016.04.08
  • Published : 2016.04.30

Abstract

The present study was conducted to investigate the effect of whole wheat bread with added Lindera obtusiloba (LO) and Capsosiphon fulvescens (CF) ethanol extracts on serum glucose and lipid levels in Sprague Dawley rats. Rats were divided into five groups depending on the diet administered: normal bread (NC), whole wheat bread (W), whole wheat bread with LO leaves extract (WL), whole wheat bread with CF extract (WC), and whole wheat bread with freeze-drying CF (WDC). After 4 weeks of consuming the experimental diet, the blood glucose level and hemoglobin A1c contents were found to be significantly lower in the W, WL, WC, and WDC groups than in the NC group. The high-density lipoprotein-cholesterol levels increased in the WL group when compared to those in the NC group and triglycerides levels decreased in all wheat groups compared to those in the NC group. These results suggest that wheat breads containing LO and CF extracts are effective for preventing hypercholesterolemia and obesity.

이 연구는 일반식빵, 통밀빵, 그리고 생강나무 잎 추출물, 매생이 추출물, 매생이 냉동 건조물을 첨가한 통밀빵을 제조하고, 4중 동안 랫트에게 공급한 뒤 혈당과 혈중지방질 관련 지표에 미치는 영향을 조사하였다. 시험기간 동안 모든 통밀빵섭취 그룹에서의 체중증가는 일반식빵섭취 그룹과 비교하여 유의적으로 낮게 나타났으며, 음수, 식이 섭취량은 그룹간의 유의적인 차이를 보이지 않았다. 간과 신장의 무게, AST, ALP, ALT는 모든 그룹간의 유의적인 차이가 없는 것으로 보아 일반식빵과 통밀빵 식이제공은 간과 신장의 스트레스 증가와 무관함을 확인할 수 있었다. 공복혈당 수준은 NC 그룹은 1주차에서부터 4주차까지 혈당이 완만하게 상승했던 것에 비해 모든 통밀빵 그룹은 혈당 증가폭이 감소하는 경향을 나타내었다. 4주차에서는 모든 통밀빵 그룹은 NC 그룹과 비교하여 유의적인 차이를 보이며 혈당이 감소하는 것을 확인할 수 있었다. 경구당부하검사(OGTT)시 90분대 혈당치에서 모든 통밀빵 그룹은 NC 그룹($152.13{\pm}19.90mg/dL$)의 혈당치와 비교하여 유의적인 차이를 보이며 감소하는 것을 보여주었으며(p<0.05), AUC에서 WDC 그룹을 제외한 W 그룹, WL 그룹, 그리고 WC 그룹의 area value가 NC 그룹과 유의적인 차이를 보이며 적어졌다. WL 그룹과 WC 그룹의 경우 NC 그룹과 W 그룹과도 유의적인 차이를 보이며 면적이 감소하는 것을 확인하였다. 혈당 곡선아랫면적과 경구당부하 검사 결과를 종합해 볼 때 생강 추출물과 매생이 추출물이 첨가된 식빵은 일반식빵에 비해 내당능에 도움을 줄 수 있을 것으로 판단된다. 당화헤모글로빈의 함량을 측정한 결과 NC 그룹과 비교하여 모든 통밀빵 그룹에서 유의적인 차이를 보이며 함량이 감소하였고, 특히 WL 그룹과 WC 그룹은 W 그룹과도 유의적인 차이를 나타내며 당화 헤모글로빈 수치 관리에 좋은 효과를 나타내었다. 혈청 인슐린 농도를 측정하였을 때 모든 그룹에서 유의적인 차이를 보이지 않았으나 수치적으로 보았을 때 NC 그룹 대비 WL 그룹에서 39.9%, WC 그룹에서 37.2% 인슐린 함량이 증가하는 것을 확인하였다. 혈중 지방 질 지표를 측정한 결과 총 콜레스테롤과 LDL-콜레스테롤 수치에서는 그룹간 유의적인 차이를 나타내지 않았고, 중성지방의 경우 NC 그룹과 비교해 모든 통밀빵 그룹에서 유의적인 차이를 보이며 중성지방의 수치가 감소하였다. 혈중 HDL-콜레스테롤 수치는 WL 그룹이 NC 그룹과 유의적인 차이를 보이며 증가하는 것을 확인할 수 있었다. TBARS assy를 이용한 지방질과 산화 산물인 MDA를 측정한 결과 NC 그룹과 비교하여 모든 통밀빵 그룹에서 유의적인 차이를 나타내며 농도가 낮아졌고, WC 그룹에서 가장 낮은 수치를 나타내었다. 지방질과 관련된 유전인자인 $PPAR-{\alpha}$ mRNA 발현을 측정한 결과 모든 그룹간의 유의적인 차이는 나타나지 않았고, $PPAR-{\gamma}$ mRNA 발현의 경우 WL 그룹, WC 그룹에서 NC 그룹과 유의적인 차이를 나타내며 가장 적은 발현을 나타내었다. 이러한 결과를 미루어 보아 일반식빵에 비해 통밀빵을 섭취한 모든 그룹은 몸무게, 공복혈당, 경구당부 하 검사(OGTT), 당화헤모글로빈(HbA1c), 중성지방(TG), 동맥경화지수(AI) 측정 항목에서 통계적으로 유의적인 차이를 나타내었고 이것으로 통밀은 식빵 섭취시의 혈당 증가 완화 효과를 가지며 혈중 지방질수준 개선과 비만의 예방에 기여할 것으로 판단된다. 또한 생강나무 잎 추출물과 매생이 추출물을 첨가한 통밀빵 그룹은 당화헤모글로빈(HbA1c) 측정 항목에서 통밀빵 그룹과도 유의적인 차이를 나타내며 수치가 감소한 것으로 보아 통밀의 효능에 기능성 소재인 생강나무 잎과 매생이 추출물의 효능이 더 해지면서 상당한 혈당강하효과를 나타낸 것으로 판단된다.

Keywords

References

  1. Kd A. Report of task force team for basic statistical study of Korean diabetes mellitus. In: Diabetes in Korea 2007. Korean Diabetes Association, Seoul, Korea (2008)
  2. Grover J, Yadav S, Vats V. Medicinal plants of India with antidiabetic potential. J. Ethnopharmacol. 81: 81-100 (2002) https://doi.org/10.1016/S0378-8741(02)00059-4
  3. Cho SY, Han YB, Shin KH. Screening for antioxidant activity of edible plants. J. Korean Soc. Food Sci. Nutr. 30: 133-137 (2002)
  4. Slavin JL, Martini MC, Jacobs jr DR, Marquart L. Plausible mechanisms for the protectiveness of whole grains. Am. J. Clin. Nutr. 70: 459s-463s (1999) https://doi.org/10.1093/ajcn/70.3.459s
  5. Slavin J, Jacobs D, Marquart L. Wholegrain consumption and chronic disease: Protective mechanisms. Nutr. Cancer 27: 14-21 (1997) https://doi.org/10.1080/01635589709514495
  6. Jacobs D, Meyer KA, Kushi LH, Folsom AR. Whole-grain intake may reduce the risk of ischemic heart disease death in postmenopausal women: The Iowa women's health study. Am. J. Clin. Nutr. 68: 248-257 (1998) https://doi.org/10.1093/ajcn/68.2.248
  7. Mckeown NM, Meigs JB, Liu S, Wilson PW, Jacques PF. Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am. J. Clin. Nutr. 76: 390-398 (2002) https://doi.org/10.1093/ajcn/76.2.390
  8. Kwon DJ, Kim JK, Bae YS. Essential oils from leaves and twigs of Lindera obtusiloba. J. Korean For. Soc. 96: 65-69 (2007)
  9. Kim SH, Son JH, Lee SH. Inhibitory effects of water extract of Lindera obtusiloba on the mast cell-mediated allergic inflammation. Korean J. Pharmacogn. 40: 233-237 (2009)
  10. Bang CY, Won EK, Park KW, Lee GW, Choung SY. Antioxidant activites and whitening effect from Lindera obtusiloba BL. extract. Yakhak Hoeji 52: 355-360 (2008)
  11. Park KJ, Park SH, Kim JK. Anti-wrinkle activity of Lindera obtusiloba extract. J. Soc. Cosmet. Sci. Korea 35: 317-323 (2009)
  12. Hwang EK, Amano H, Park CS. Assessment of the nutritional value of Capsosiphon fulvescens (Chlorophyta): Developing a new species of marine macroalgae for cultivation in Korea. J. Appl. Phycol. 20: 147-151 (2008) https://doi.org/10.1007/s10811-007-9198-z
  13. Kang YS, You DW, Park KB, Kang NJ, Kim JS, Kim HY, Cho YH, Lee KN, Byun JH, Ha JH. A comprehensive bibliography on the fishery special commodity in Korea. Suhyepmunhwasa, Seoul, Korea. pp. 418-421 (2000)
  14. Hong CO, Seomun Y, Koo YC, Nam MH, Lee HA, Kim JH, Wang Z, Yang SY, Lee SH, No SH, Lee KW. Single and 14-day repeated oral toxicity studies of 70% ethanol extract of Lindera obtusiloba blume leaves. J. Korean Soc. Food Sci. Nutr. 38: 1324-1330 (2009) https://doi.org/10.3746/jkfn.2009.38.10.1324
  15. Nam MH, Koo YC, Hong CO, Yang SY, Kim SW, Jung HL, Lee H, Kim JY, Han AR, Son WR, Pyo MC, Lee KW. In vivo study of the renal protective effects of Capsosiphon fulvescens against streptozotocin-induced oxidative stress. Korean J. Food Sci. Technol. 46: 641-647 (2014) https://doi.org/10.9721/KJFST.2014.46.5.641
  16. Lauer RM, Lee J, Clarke WR. Factors affecting the relationship between childhood and adult cholesterol levels: The Muscatine Study. Pediatrics 82: 309-318 (1988)
  17. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. biochem. 95: 351-358 (1979) https://doi.org/10.1016/0003-2697(79)90738-3
  18. Steer KA, Sochor M, McLean P. Renal hypertrophy in experimental diabetes: Changes in pentose phosphate pathway activity. Diabetes 34: 485-490 (1985) https://doi.org/10.2337/diab.34.5.485
  19. Nannipieri M, Gonzales C, Baldi S, Posadas R, Williams K, Haffner SM, Stern MP, Ferrannini E. Liver enzymes, the metabolic syndrome, and incident diabetes: The Mexico city diabetes study. Diabetes care 28: 1757-1762 (2005) https://doi.org/10.2337/diacare.28.7.1757
  20. Trowell H, Southgate DT, Wolever TS, Leeds A, Gassull M, Jenkins DA. Dietary fibre redefined. The Lancet. 307: 967 (1976)
  21. Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: A sensitive quantitative biomarker for early detection of kidney tubular injury. Am. J. Physiol.-Renal 290: F517-F529 (2006) https://doi.org/10.1152/ajprenal.00291.2005
  22. Bessman SP, Carpenter CL. The creatine-creatine phosphate energy shuttle. Annu. Rev. Biochem. 54: 831-862 (1985) https://doi.org/10.1146/annurev.bi.54.070185.004151
  23. Allen PJ. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci. Biobehav. Rev. 36: 1442-1462 (2012) https://doi.org/10.1016/j.neubiorev.2012.03.005
  24. Coresh J, Wei GL, Mcquillan G, Brancati FL, Levey AS, Jones C, Klag MJ. Prevalence of high blood pressure and elevated serum creatinine level in the United States: Findings from the third National Health and Nutrition Examination Survey (1988-1994). Arch. Intern. Med. 161: 1207-1216 (2001) https://doi.org/10.1001/archinte.161.9.1207
  25. Rao SS, Disraeli P, McGregor T. Impaired glucose tolerance and impaired fasting glucose. Am. Fam. Physician. 69: 1961 (2004)
  26. Kim JH, Oh MG, Han MA, Lee MS, Kim YI, Go IW, Lee JY, Heo GS. Evaluation of HbA1c as a screening for type 2 diabetes mellitus in Korea. Korean Public Health Res. 38: 41-47 (2012)
  27. Le Floch JP, Escuyer P, Baudin E, Baudon D, Perlemuter L. Blood glucose area under the curve: Methodological aspects. Diabetes care 13: 172-175 (1990) https://doi.org/10.2337/diacare.13.2.172
  28. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 34: 362-366 (1981) https://doi.org/10.1093/ajcn/34.3.362
  29. Matsuyama-Yokono A, Tahara A, Nakano R, Someya Y, Hayakawa M, Shibasaki M. Chronic inhibition of dipeptidyl peptidase- IV with ASP8497 improved the HbA1c level, glucose intolerance, and lipid parameter level in streptozotocin-nicotinamide-induced diabetic mice. Naunyn-Schmiedebergs Arch. Pharmacol. 379: 191-199 (2009) https://doi.org/10.1007/s00210-008-0348-x
  30. Inzucchi S, Bergenstal R, Fonseca V, Gregg ED, Mayer-Davis B, Spollett G, Wender R. Diagnosis and classification of diabetes mellitus. Am Diabetes Assoc. 33: S62-S69 (2010)
  31. Watanabe M, Kokubo Y, Higashiyama A, Ono Y, Okayama A, Okamura T. New diagnosis criteria for diabetes with hemoglobin A1c and risks of macro-vascular complications in an urban Japanese cohort: The suita study. Diabetes Res. Clin. Pract. 88: e20-e23 (2010) https://doi.org/10.1016/j.diabres.2010.01.019
  32. Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, Coresh J, Brancati FL. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Engl. J. Med. 362: 800-811 (2010) https://doi.org/10.1056/NEJMoa0908359
  33. Sonksen P, Sonksen J. Insulin: Understanding its action in health and disease. Br. J. Anaesth. 85: 69-79 (2000) https://doi.org/10.1093/bja/85.1.69
  34. Remsberg KE, Talbott EO, Zborowski JV, Evans RW, Mchugh-Pemu K. Evidence for competing effects of body mass, hyperinsulinemia, insulin resistance, and androgens on leptin levels among lean, overweight, and obese women with polycystic ovary syndrome. Fertil. Steril. 78: 479-486 (2002) https://doi.org/10.1016/S0015-0282(02)03303-4
  35. Nordestgaard BG, Chapman MJ, Ray K, Born J, Andreotti F, Watts GF, Ginsberg H, Amarenco P, Catapano A, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P, Masana L, Reiner Z, Taskinen MR, Tokgözoglu LT, Tybjærg-Hansen A. Lipoprotein (a) as a cardiovascular risk factor: Current status. Eur. Heart J. 1-12 (2010)
  36. Mohun AF, Cook IJY. Simple methods for measuring serum levels of the glutamic-oxalacetic and glutamic-pyruvic transaminases in routine laboratories. J. Clin. Pathol. 10: 394-399 (1957) https://doi.org/10.1136/jcp.10.4.394
  37. Wronski TJ, Cintron M, Dann LM. Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif. Tissue Int. 43: 179-183 (1988) https://doi.org/10.1007/BF02571317
  38. Thurman RG, Bradford BU, Iimuro Y, Knecht KT, Connor HD, Adachi Y, Wall C, Arteel GE, Raleigh JA, Forman DT, Mason RP. Role of Kupffer cells, endotoxin and free radicals in hepatotoxicity due to prolonged alcohol consumption: Studies in female and male rats. J. Nutr. 127: 903S-906S (1997) https://doi.org/10.1093/jn/127.5.903S
  39. Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res. 37: 907-925 (1996)
  40. Murakami K, Tobe K, Ide T, Mochizuki T, Ohashi M, Akanuma Y, Yazaki Y, Kadowaki T. A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and PPAR-gamma: Effect of PPAR-alpha activation on abnormal lipid metabolism in liver of Zucker fatty rats. Diabetes 47: 1841-1847 (1998) https://doi.org/10.2337/diabetes.47.12.1841
  41. Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of $PPAR{\alpha}$ in energy metabolism and vascular homeostasis. J. Clin. Invest. 116: 571-580 (2006) https://doi.org/10.1172/JCI27989
  42. Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, Fruchart J-C, Briggs M, Spiegelman BM, Auwerx J. Regulation of peroxisome proliferator-activated receptor ${\gamma}$ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: Implications for adipocyte differentiation and metabolism. Mol. Cell. Biol. 19: 5495-5503 (1999) https://doi.org/10.1128/MCB.19.8.5495