DOI QR코드

DOI QR Code

Influence of Mo Addition on High Temperature Deformation Behavior of L12 Type Ni3Al Intermetallics

  • Han, Chang-Suk (Department of Defense Science & Technology, Hoseo University) ;
  • Jang, Tae-Soo (Department of Nanobiotronics, Hoseo University)
  • 투고 : 2015.12.30
  • 심사 : 2016.01.25
  • 발행 : 2016.04.27

초록

The high temperature deformation behavior of $Ni_3Al$ and $Ni_3(Al,Mo)$ single crystals that were oriented near <112> was investigated at low strain rates in the temperature range above the flow stress peak temperature. Three types of behavior were found under the present experimental conditions. In the relatively high strain rate region, the strain rate dependence of the flow stress is small, and the deformation may be controlled by the dislocation glide mainly on the {001} slip plane in both crystals. At low strain rates, the octahedral glide is still active in $Ni_3Al$ above the peak temperature, but the active slip system in $Ni_3(Al,Mo)$ changes from octahedral glide to cube glide at the peak temperature. These results suggest that the deformation rate controlling mechanism of $Ni_3Al$ is viscous glide of dislocations by the <110>{111} slip, whereas that of $Ni_3(Al,Mo)$ is a recovery process of dislocation climb in the substructures formed by the <110>{001} slip. The results of TEM observation show that the characteristics of dislocation structures are uniform distribution in $Ni_3Al$ and subboundary formation in $Ni_3(Al,Mo)$. Activation energies for deformation in $Ni_3Al$ and $Ni_3(Al,Mo)$ were obtained in the low strain rate region. The values of the activation energy are 360 kJ/mol for $Ni_3Al$ and 300 kJ/mol for $Ni_3(Al,Mo)$.

키워드

참고문헌

  1. C. S. Oh and C. S. Han, Korean J. Mater. Res., 22, 42 (2012). https://doi.org/10.3740/MRSK.2012.22.1.042
  2. C. S. Han, K. W. Koo and D. C. Oh, Korean J. Mater. Res., 16, 241 (2006). https://doi.org/10.3740/MRSK.2006.16.4.241
  3. S. U. An, S. C. Kim, O. D. Im, S. H. Kim, Y. H. Jin, J. S. Choe, J. H. Lee, S. J. Lee, D. L. Seo, T. H. Lee and M. Y. Heo, Korean J. Mater. Res., 8, 1165 (1998).
  4. S. I. Rao, D. M. Dimiduk and T. A. Parthasarathy, Scripta Mater., 66, 410 (2012). https://doi.org/10.1016/j.scriptamat.2011.12.002
  5. J. R. Nicholls and R. D. Rawlings, J. Mater. Sci., 12, 2456 (1977). https://doi.org/10.1007/BF00553933
  6. Y. Q. Sun and N. Yang, Intermetallics, 9, 979 (2001). https://doi.org/10.1016/S0966-9795(01)00099-1
  7. T. Suzuki, Y. Mishima and S. Miura, ISIJ Int., 29, 1 (1989). https://doi.org/10.2355/isijinternational.29.1
  8. B. V. Petukhov, M. Bartsch and U. Messerschmidt, Appl. Phys., 9, 89 (2000).
  9. J. N. Wang and T. G. Nieh, Scripta Metall. Mater., 33, 633 (1995). https://doi.org/10.1016/0956-716X(95)00230-S
  10. B. V. Petukhov, Crystallogr. Rep., 42, 161 (1997).
  11. S. Takeuchi, Philos. Mag. A, 71, 1255 (1995). https://doi.org/10.1080/01418619508244372
  12. S. A. Sajjadi and S. Nategh, Mater. Sci. Eng. A, 307, 158 (2001). https://doi.org/10.1016/S0921-5093(00)01822-0
  13. M. M. P. Janssen, Metall. Trans., 4, 1623 (1973).
  14. K. Hoshino, S. J. Rothman and R. S. Averback, Acta Metall. Mater., 36, 1271 (1988). https://doi.org/10.1016/0001-6160(88)90279-9
  15. S. Frank, J. Rüsing and Chr. Herzig, Intermetallics, 4, 601 (1996). https://doi.org/10.1016/0966-9795(96)00058-1