DOI QR코드

DOI QR Code

GSTARS 모형을 이용한 한강 상류부에서 유량변동에 따른 하상변동 민감도 분석

Sensitive analysis of river geometry under various flow conditions in South Han River using GSTARS model

  • 안정규 (인천대학교 건설환경공학부) ;
  • 이종문 (인제대학교 환경공학과) ;
  • 김영도 (인제대학교 환경공학과(낙동강유역환경연구센터)) ;
  • 강부식 (단국대학교 토목환경공학과)
  • Ahn, Jungkyu (Department of Civil and Environmental Engineering, Incheon University) ;
  • Lee, Jong Mun (Department of Environmental Engineering, Inje University) ;
  • Kim, Young Do (Department of Environmental Engineering(Nakdong River Environmental Research Center), Inje University) ;
  • Kang, Boosik (Department of Civil and Environmental Engineering, Dankook University)
  • 투고 : 2015.12.10
  • 심사 : 2016.03.03
  • 발행 : 2016.04.30

초록

본 연구에서는 기후변화에 의한 유량의 변화에 따른 시나리오를 구성하고 장기간, 장구간에 걸친 하상변동 양상을 예측하였다. 준2차원 수치모형인 GSTARS를 이용하여 남한강의 하상변동 모의에 적합한 민감도 분석을 수행하였다. 홍수위에 대한 하상변동 모의결과와 실측치에 대한 결정계수, 평균제곱근 오차, 모형효율성계수를 비교한 결과, 모의에 적합한 결과를 나타내어 GSTARS 모형의 적용성을 확인하였다. 수류튜브를 활용하여 개수에 따른 영향을 분석한 결과, 수류튜브 3개일 때 하상변동이 적절하게 나타났으며 너무 많은 수류튜브는 깊이만 깊어지는 결과를 나타냈다. 유사량 공식으로는 Ackers and White공식, Yang 공식이 적용성이 좋았다. 유량의 변화에 관계없이 하도가 좁아지는 방향으로 변화할 것이며 기후변화로 인해 유량이 늘어날수록 하도가 깊어질 것으로 예상된다.

Flow input from the basin will not remain the same as before due to climate changes. Since the predictions on river discharge due to climate change is given by scenarios, various discharge scenarios were prepared in this study. For a long term and reach prediction, semi-two dimensional sediment transport model, GSTARS, was used. The flood water surface elevations predicted by GSTARS model were analysed statistically and it was concluded that the model is applicable for the South Han River. Three stream tubes is the most suitable to simulate two dimensional river geometric change River geometric changes. For sediment load computation, Ackers and White equation and Yang equation were resonable. River will become narrower regardless of discharge variation, more discharge results in deeper channel.

키워드

참고문헌

  1. Ackers, P., and White, W.R. (1973). "Sediment Transport: New Approach and Analysis." Jounral of the Hydraulics Division, ASCE, Vol. 99, No. 11, pp. 2041-2060.
  2. Ahn, S.J., Yoon, S.H., and Baek, N.D. (2002). "Prediction of River Bed Variation using Numerical Model." Journal of Korea Water Resources Association, Vol. 35, No. 6, pp. 693-701. https://doi.org/10.3741/JKWRA.2002.35.6.693
  3. Ahn, J. (2012). "Introduction of Riverbed Variation Numerical Model." Journal of Water for the Future, Vol. 45, No. 6, pp. 104-105.
  4. Ahn, J., Yang, C.T., Boyd, P.M., Pridal, D.B., and Remus, J.I. (2013). "Numerical modeling of sediment flushing from Lewis and Clark Lake." International Journal of Sediment Research, Vol. 28, No. 2, pp. 182-193. https://doi.org/10.1016/S1001-6279(13)60030-X
  5. Ahn, J., and Yang, C.T. (2014). Simulation of lateral migration of all American canal with semi-two dimensional sediment transport model, KSCE Journal of Civil Engineering. Vol. 18, No. 6, pp 1896-1903. https://doi.org/10.1007/s12205-014-0311-y
  6. Ahn, J., and Yang, C.T. (2015). Determination of recovery factor for simulation of non-equilibrium sedimentation in reservoir, International Journal of Sediment Research. Vol. 39, No. 1, pp. 68-73.
  7. Ahn, J., and Yen, H. (2015). Semi-two dimensional numerical prediction of non-equilibrium sediment transport in reservoir using stream tubes and theory of Minimum stream power. KSCE Journal of Civil Engineering, Vol. 19, No. 6, pp. 1922-1929. https://doi.org/10.1007/s12205-014-0098-x
  8. Ahn, J.M., Lyu, S., and Lee, N.J. (2013). "Determination of the Optimal Sediment Discharge Formula for Hyeongsan River Using GSTARS." Journal of Korean Society of Civil Engineers, Vol. 32, No. 1B, pp. 1-7. https://doi.org/10.12652/KSCE.2012.32.1B.001
  9. Choi, H., Lim, C.S., and Jung, J.W. (2011). "Analysis of River Variation at the Downstream of Ji-Chun using Numerical Model." Journal of Korean Society of Hazard Mitigation, Vol. 11, No. 3, pp. 117-125. https://doi.org/10.9798/KOSHAM.2011.11.3.117
  10. Duboys, P. (1879). "Le rohne et les rivieres a lit affouilable." Annales des Ponts et Chausses, Vol. 18, No. 5, pp. 141-195.
  11. Engelund, F., and Hansen, E. (1967). A monograph on sediment transport in alluvial streams, Tekisk Forlag, Copenhagen, Denmark.
  12. Hwang, S.D., Choi, S.H., Lee, S.J., and Jang, C.L. (2013). "Long-term Riverbed Change Simulation and Analysis in the River." Journal of Korea Spatial Information Society, Vol. 21, No. 5, pp. 1-6.
  13. Jang, E.K., Lim, J.C., Ji, U., and Yeo, W.K. (2011). "Parameter Calibration and Sensitivity Analysis for Numerical Modeling of Flow and Bed Changes near the Opening Gate for Sediment Release." Journal of Environmental Science International, Vol. 20, No. 9, pp. 1151-1163. https://doi.org/10.5322/JES.2011.20.9.1151
  14. Lee, J.H. (2006). "Analysis of Dalcheon River Bed Change using GSTARS Model." Journal of Korea Academia-Industrial cooperation Society, Vol. 7, No. 6, pp. 1264-1270.
  15. Legates, D.R., and McCabe, G.J. (1999). "Evaluating the use of "goodness of fit" measures in hydrologic and hydro climatic model validation." Water Resource Research, Vol. 35, No. 1, pp. 645-654
  16. Ministry of Land, Transport and Maritime Affairs (MOLIT) (2009). "Han River Master Plan Report" Technical Report.
  17. Morris, G.L., and Fan, J., (1997). Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoir, and Watersheds for Sustainable Use, McGrawHill, NewYork.
  18. Nash, J.E., and Sutcliffe, J.E. (1970). "River flow forecasting through conceptual models, Part I-A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  19. Nathalie, E., Asselman, M., Middelkoop, H., and Van Dijk, P.M. (2003). "The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the River Rhine." Hydrological Processes, Vol. 17, No. 16, pp. 3225-3244. https://doi.org/10.1002/hyp.1384
  20. Rim, C.S., Son, K.I., Lee, J.J., and Yoon, S.E. (1999). "A Study on the Sediment Movement using Numerical Models." Journal of Korea Water Resources Association, Vol. 32, No. 2, pp. 131-142.
  21. Samaras, A.G., and Koutitas, C.G. (2014). "Modeling the impact of climate change on sediment transport and morphology in coupled watershed-coast systems: A case study using an integrated approach." International Journal of Sediment Research, Vol. 29, No. 3, pp. 304-315. https://doi.org/10.1016/S1001-6279(14)60046-9
  22. Seo, I.W., Kim, D.G., and Lee, J.H. (1995). "Analysis of River Bed Change by Using Computer Model GSTARS." Journal of Korean Society of Civil Engineers, Vol. 15, No. 6, pp. 1679-1687.
  23. Wood, A.W., Maurer, E.P., Kurnar, A., and Lettenmaier, D.P. (2002). Long-range experiment hydrologic forecasting for the easterm United States, Journal of Geophysical Research Atmospheres, Vol. 107, No. 20, pp. 6.1-6.15.
  24. Woo, H.S., and Yu, K.K. (1990). "Test and Application of the Modified Einstein Procedure to Rivers in Korea.", Korea Institute of Construction Technology.
  25. Yang, C.T. (1973). "Incipient Motion and Sediment Transport.", Jounral of the Hydraulics Division, ASCE, Vol. 99, No. 10, pp. 1679-1704.
  26. Yang, C.T. (1984). "Unit stream power equation for gravel.", Jounral of Hydraulic Engineering, ASCE, Vol. 110, No. 12, pp. 1783-1797. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1783)
  27. Yang, C.T., and Simoes, F.J.M. (2002). User's Manual for GSTARS3 (Generalized Sediment Transport model for Alluvial River Simulation version 3.0), U.S. Bureau of Reclamation, Denver, CO.