DOI QR코드

DOI QR Code

가뭄해갈 가능성을 고려한 가뭄사상의 결정 및 확률 가뭄심도 산정

Determination of drought events considering the possibility of relieving drought and estimation of design drought severity

  • 유지영 (전북대학교 토목공학과) ;
  • 유지수 (한양대학교 대학원 건설환경공학과) ;
  • 권현한 (전북대학교 토목공학과) ;
  • 김태웅 (한양대학교 공학대학 건설환경플랜트공학과)
  • Yoo, Ji Young (Dept. of Civil Engineering, Chonbuk National University) ;
  • Yu, Ji Soo (Dept. of Civil and Environmental Engineering, Hanyang University) ;
  • Kwon, Hyun-Han (Dept. of Civil Engineering, Chonbuk National University) ;
  • Kim, Tae-Woong (Dept. of Civil and Environmental Engineering, Hanyang University)
  • 투고 : 2015.12.24
  • 심사 : 2016.02.02
  • 발행 : 2016.04.30

초록

본 연구에서는 가뭄사상과 확률 가뭄심도를 결정하는 새로운 방법을 제안하였다. 강우자료로부터 가뭄사상을 추출하기 위해 연속이론과 누적 강우부족량을 동시에 고려하였다. 절단수준 이상의 강우사상이 발생할 경우, 그 때까지의 누적 강우부족량을 해갈할 수 있을 만큼의 강우량이 발생하였는가를 확인하여 가뭄사상의 종료여부를 최종 결정하였다. 이와 같이 추출된 가뭄사상의 지속기간과 심도의 상호 의존성 구조를 파악하여 결합분포함수를 추정하기 위해 코플라 함수를 적용하였다. 또한 이변량 코플라 함수의 조건부 함수를 이용하여 가뭄의 특정 지속기간에 대한 가뭄심도의 재현특성을 분석하였으며, 신뢰구간을 추정하여 이변량 빈도해석의 불확실성을 정량화하였다. 서울지점의 1909~2015년 강수자료에 적용한 결과 과거 극한가뭄으로 판단되었던 가뭄사상은 대부분 최소 10년에서 최대 50년 정도의 재현기간을 갖는 반면 2013년 발생하여 현재까지 지속되고 있는 2015년 가뭄은 현저히 높은 재현기간을 가지고 있는 것으로 나타났다. 이러한 연구 결과는 향후 가뭄대책을 마련하는 데 있어 빈도개념을 바탕으로 하는 신뢰성 있는 기준으로 활용할 수 있을 것으로 기대된다.

The objective of this study is to propose a new method to determine the drought event and the design drought severity. In order to define a drought event from precipitation data, theory of run was applied with the cumulative rainfall deficit. When we have a large amount of rainfall over the threshold level, in this study, we compare with the previous cumulative rainfall deficit to determine whether the drought is relieved or not. The recurrence characteristics of the drought severity on the specific duration was analyzed by the conditional bivariate copula function and confidence intervals were estimated to quantify uncertainties. The methodology was applied to Seoul station with the historical dataset (1909~2015). It was observed that the past droughts considered as extreme hydrological events had from 10 to 50 years of return period. On the other hand, the current on-going drought event started from 2013 showed the significantly higher return period. It is expected that the result of this study may be utilized as the reliable criteria based on the concept of return period for the drought contingency plan.

키워드

참고문헌

  1. Darsow, W.F., Nguyen, B., and Olsen, E.T. (1992). "Copulas and Markov processes." Illinois Journal of Mathematics, Vol. 36, No. 4, pp. 600-642.
  2. Kim, T.W., Valdes, J.B., and Yoo, C. (2003). "Nonparametric approach for estimating return period of droughts in arid regions." Journal of Hydrologic Engineering, Vol. 8, No. 5, pp. 237-246. https://doi.org/10.1061/(ASCE)1084-0699(2003)8:5(237)
  3. Kim, T.W., Valdes, J.B., and Yoo, C. (2006). "Nonparametric approach for bivariate drought characterization using Palmer drought index." Journal of Hydrologic Engineering, Vol. 11, No. 2, pp. 134-143. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(134)
  4. KWRA (Korea Water Resource Association) (2009). River Design Criteria.Commentary.
  5. Lee, T., and Salas, J.D. (2011). "Copula-based stochastic simulation of hydrological data applied to Nile River flows." Hydrology Research, Vol. 42, No. 4, pp. 318-330. https://doi.org/10.2166/nh.2011.085
  6. Mckee, T.B., Doesken, N.J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." Proceedings of the Eighth Conference on Applied Climatology, January 17-22 1993, Anaheim, California, pp. 179-184.
  7. MCT (Ministry of Construction and Transportation) (1995). Drought Record and Research Report 1995.
  8. Mirakbari, M., Ganji, A., and Fallah, S. (2010). "Regional bivariate frequency analysis of meteorological droughts." Journal of Hydrologic Engineering, Vol. 15, No. 12, pp. 985-1000. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000271
  9. Nelson, R.B. (2006). An introduction to copulas. Springer, U.S.
  10. Reddy, M.J. and Ganguli, P. (2012). "Application of copulas derivation of drought severity-duration-frequency curves.", Hydrological Processes, Vol. 26, pp. 1672-1685. https://doi.org/10.1002/hyp.8287
  11. Salas, J.D., Fu, C., Cancelliere, A., Dustin, D., Bode, D., Pineda, A., and Vincent, E. (2005). "Characterizing the severity and risk of drought in the Poudre River, Colorado." Journal of Water Resources Planning and Management, Vol. 131, No. 5, pp. 383-393. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:5(383)
  12. Scott, D.W. (1992). Multivariate Density Estimation: Theory, Practice and Visualization. Wiley, New York.
  13. Wong, G., Lambert, M.F., Leonard, M., and Metcalfe, A.V. (2010). "Drought analysis using trivariate copulas conditional on climate states." Journal of Hydrologic Engineering, Vol. 15, No. 2, pp. 129-141. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000169
  14. Yoo, C., and Ryoo, S. (2003). "Analysis of drought return and duration characteristics at Seoul." Journal of Korea Water Resources Association, Vol. 36, No. 4, pp. 561-573. https://doi.org/10.3741/JKWRA.2003.36.4.561
  15. Yoo, J.Y., Kim, U.T., and Kim, T.W. (2013). "Bivariate drought frequency curves and confidence intervals: a case study using monthly rainfall generation." Stochastic Environmental Research and Risk Assessment, Vol. 27, No. 1, pp. 285-295. https://doi.org/10.1007/s00477-012-0588-7
  16. Yoo, J.Y, Kim, D., Kim, H., and Kim, T.W. (2014). "Application of copula functions to construct confidence intervals of bivariate drought frequency curve." Journal of Hydro-environmental Research, In Press, doi:10.1016/j.jher.2014.10.002.