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ACCELERATION OF ONE-PARAMETER RELAXATION

METHODS FOR SINGULAR SADDLE POINT PROBLEMS

Jae Heon Yun

Abstract. In this paper, we first introduce two one-parameter relax-
ation (OPR) iterative methods for solving singular saddle point problems
whose semi-convergence rate can be accelerated by using scaled precon-
ditioners. Next we present formulas for finding their optimal parameters
which yield the best semi-convergence rate. Lastly, numerical experiments
are provided to examine the efficiency of the OPR methods with scaled
preconditioners by comparing their performance with the parameterized
Uzawa method with optimal parameters.

1. Introduction

We consider convergence acceleration of one-parameter relaxation iterative
methods for solving the following saddle point problem

(1)

(
A B

−BT 0

)(
x
y

)
=

(
b

−q

)
,

where A ∈ R
m×m is a symmetric positive definite matrix, and B ∈ R

m×n is
a matrix with m ≥ n. The saddle point problem (1) is important since this
problem occurs very often in many different applications of scientific computing
and engineering, such as the mixed finite element methods for Navier-Stokes
equations [8, 9], computational fluid dynamics, constrained optimization [14],
linear elasticity, the constrained least squares problems and generalized least
squares problems [1, 17]. So many iterative methods for solving the saddle
point problem (1) have been proposed by many researchers.

When B has a full column rank, the coefficient matrix of (1) is nonsingular
and so the problem (1) is called a nonsingular saddle point problem. Many
relaxation iterative methods for solving the nonsingular saddle point problem
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have been proposed. For example, Golub et al. [10] proposed the SOR-like
method and presented an incomplete formula for finding one optimal parame-
ter, Bai et al. [3] proposed the GSOR (Generalized SOR) method and presented
a formula for finding two optimal parameters for the GSOR and a complete
formula for finding one optimal parameter for SOR-like method, Wu et al. [15]
proposed the MSSOR (Modified symmetric SOR) method, Zhang and Lu [20]
studied the GSSOR (Generalized symmetric SOR) method and Chao et al. [6]
presented a formula for finding two optimal parameters for the GSSOR, Yun
studied several variants of Uzawa method [18, 19], and so on.

In case of B being a rank-deficient matrix, the coefficient matrix of (1)
is singular and so the problem (1) is called a singular saddle point problem.
Several authors have presented semi-convergence analysis of relaxation iter-
ative methods for solving the singular saddle point problem (1). Zheng et
al. [24] studied semi-convergence of the PU (Parameterized Uzawa) method, Li
and Huang [12] examined semi-convergence of the GSSOR method, Zhang and
Wang [21] studied semi-convergence of the GPIU method, Chao and Chen [5]
provided semi-convergence analysis of the Uzawa-SOR method, and so on.

The purpose of this paper is to propose two one-parameter relaxation (OPR)
iterative methods for solving the singular saddle point problems whose semi-
convergence rate can be accelerated. This paper is organized as follows. In
Section 2, we provide preliminary results for semi-convergence of the basic iter-
ative methods. In Section 3, we first introduce two OPRmethods for solving the
singular saddle point problems, and then we show that their semi-convergence
rate can be accelerated by using scaled preconditioners. We also present formu-
las for finding their optimal parameters which yield the best semi-convergence
rate. In Section 4, numerical experiments are provided to examine the effec-
tiveness of the OPR methods with scaled preconditioners by comparing their
performance with the parameterized Uzawa (PU) method with optimal param-
eters. Lastly, some conclusions are drawn.

2. Preliminaries for semi-convergence analysis

For a square matrix G, G∗ denotes the complex conjugate transpose of the
matrix G, σ(G) denotes the set of all eigenvalues of G and ρ(G) denotes the
spectral radius of G. We first introduce a useful lemma which will be used
later.

Lemma 2.1 ([16]). Consider the quadratic equation x2 − bx+ c = 0, where b
and c are real numbers. Both roots of the equation are less than one in modulus

if and only if |c| < 1 and |b| < 1 + c.

Let us recall some useful results on iterative methods for solving singular
linear systems based on matrix splitting. Let S = M − N be a splitting
of a singular matrix S, where M is nonsingular. Then an iterative method
corresponding to this splitting for solving a consistent singular linear system
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Sx = b is given by

(2) xi+1 = M−1Nxi +M−1b for i = 0, 1, . . . .

It is well-known that if S is nonsingular, then the iterative method (2) is con-
vergent if and only if ρ(M−1N) < 1. Since S is singular, the iteration matrix
M−1N has an eigenvalue 1 and thus ρ(M−1N) can not be less than 1. Thus,
we need to introduce its pseudo-spectral radius ν(M−1N)

ν(M−1N) = max{|λ| | λ ∈ σ(M−1N)− {1}}.

For a matrix E ∈ R
n×n, the smallest nonnegative integer k such that rank(Ek)

= rank(Ek+1) is called the index of E, and denoted by k = index(E). Notice
that a matrix T is called semi-convergent if limk→∞ T k exists, or equivalently
index(I − T ) = 1 and ν(T ) < 1 [4].

Theorem 2.2 ([4]). The iterative method (2) is semi-convergent if and only if

index(I −M−1N) = 1 and ν(M−1N) < 1, i.e., M−1N is semi-convergent.

3. Semi-convergence acceleration of OPR methods for singular

saddle point problem

In this section, we consider the saddle point problem (1) whose coefficient
matrix has the following splitting

(
A B

−BT 0

)
= D − L− U,

where

D =

(
A 0
0 Q

)
, L =

(
0 0
BT 0

)
, U =

(
0 −B
0 Q

)
,

and Q ∈ R
n×n is a symmetric positive definite matrix which approximates

BTA−1B. Let

z =

(
x
y

)
, c =

(
b

−q

)
, Ω =

(
ωIm 0
0 τIn

)
,

where ω > 0 and τ > 0 are relaxation parameters, Im ∈ R
m×m and In ∈ R

n×n

denote the identity matrices of order m and n, respectively. Then the GSOR
method [4] for solving the saddle point problem (1) is defined by

zk+1 = Tω,τ zk + gω,τ , k = 0, 1, 2, . . . ,

where Tω,τ = (D−ΩL)−1((I−Ω)D+ΩU) is an iteration matrix for the GSOR
method, gω,τ = (D − ΩL)−1Ω c, and I is an identity matrix of order m+ n.

Now we introduce two one-parameter relaxation (OPR) iterative methods
whose semi-convergence rate can be accelerated. One is the GSOR with τ = 1

ω

which is called OPR-A method, and the other is the GSOR with τ = 1 which
is called OPR-B method in this paper. That is, the OPR-A method is defined
by

xk+1 = (1− ω)xk + ωA−1(b−Byk),
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yk+1 = yk + (ωQ)−1(BTxk+1 − q),

and the OPR-B method is defined by

xk+1 = (1− ω)xk + ωA−1(b−Byk),

yk+1 = yk +Q−1(BTxk+1 − q).

We first provide convergence analysis of the OPR methods for the nonsin-
gular saddle point problem which is required for semi-convergence analysis of
the OPR methods for the singular saddle point problem. In order to study
convergence of the OPR-A method for the nonsingular saddle point problem,
let λ be an eigenvalue of Tω,ω−1 and ( uv ) be the corresponding eigenvector.
Then we have

(1− λ− ω)Au = ωBv,

λ

ω
BTu = (λ− 1)Qv.

(3)

The following lemma provides the convergence result for the OPR-A method.

Lemma 3.1. Let µmax be the spectral radius of Q−1BTA−1B. If µmax < 4,
then the OPR-A method converges for all 0 < ω < 2− µmax

2 .

Proof. Let µ be an eigenvalue ofQ−1BTA−1B and λ be an eigenvalue of Tω,ω−1 .
Then µ > 0. From equation (3), one can obtain the following quadratic equa-
tion for λ

(4) λ2 + (ω + µ− 2)λ+ 1− ω = 0.

Applying Lemma 2.1 to (4), one easily obtains 0 < ω < 2 − µ
2 . If 0 < ω <

2− µmax

2 , then ρ(Tω,ω−1) < 1, which completes the proof. �

Notice that if µmax ≥ 4 in Lemma 3.1, then the convergence region for which
the OPR-A method converges may be an empty set. Next theorem provides
an optimal parameter ω for which the OPR-A method performs best.

Theorem 3.2. Let µmin and µmax be the minimum and maximum eigenval-

ues of Q−1BTA−1B, respectively. Assume that µmax < 4. Then the optimal

parameter ω for the OPR-A method is given by ω = ωo, where

ωo = min{2
√
µmin − µmin, 2

√
µmax − µmax}.

Moreover ρ(Tωo,ω
−1
o
) =

√
1− ωo. That is,

ρ(Tωo,ω
−1
o
) =

{
|1−

√
µmin | if ωo = 2

√
µmin − µmin

|1−
√
µmax | if ωo = 2

√
µmax − µmax.

Proof. Let µ be an eigenvalue ofQ−1BTA−1B and λ be an eigenvalue of Tω,ω−1 .
From the quadratic equation (4) for λ, one obtains two roots

λ =
1

2

(
(2 − ω − µ)±

√
(ω + µ)2 − 4µ

)
.



ACCELERATION OF ONE-PARAMETER RELAXATION METHODS 695

Let f(ω) = 2− ω − µ and g(ω) = (ω + µ)2 − 4µ. The necessary and sufficient
condition for the roots λ to be real is g(ω) ≥ 0, which is equivalent to ω ≥
2
√
µ− µ. Since µmax < 4, 2

√
µ− µ < 2− µ

2 . Hence one obtains

(5) |λ| =

{
1
2 ( |f(ω)|+

√
g(ω) ) if 2

√
µ− µ ≤ ω < 2− µ

2√
1− ω if 0 < ω ≤ 2

√
µ− µ.

Notice that (2
√
µ−µ) ∈ (0, 1] for µ ∈ (0, 4) and it has the maximum value 1 at

µ = 1. Since ∂
∂ω

(|f |+
√
g) = −sign(f)+ ω+µ

√
g

> 0 for ω ≥ 2
√
µ−µ, 1

2 (|f |+
√
g)

is an increasing function for ω ≥ 2
√
µ − µ. Clearly

√
1− ω is a decreasing

function for 0 < ω ≤ 2
√
µ − µ. Thus, (5) implies that given µ, |λ| takes the

minimum
√
1− ω = |1 −

√
µ| when ω = 2

√
µ − µ. If S is a set containing all

eigenvalues of Q−1BTA−1B, then

min
ω

ρ(Tω,ω−1) = max
µ

min
ω

|λ| = max
ω=2

√
µ−µ, µ∈S

√
1− ω =

√
1− ωo,

where ωo = min{2
√
µmin −µmin, 2

√
µmax −µmax}. Hence the theorem follows.

�

We now study convergence of the OPR-B method for the nonsingular saddle
point problem. Let λ be an eigenvalue of Tω,1 and ( uv ) be the corresponding
eigenvector. Then we have

(1− λ− ω)Au = ωBv,

λBTu = (λ− 1)Qv.
(6)

The following lemma provides the convergence result for the OPR-B method.

Lemma 3.3. Let µmax be the spectral radius of Q−1BTA−1B. If 0 < ω <
4

2+µmax
, then the OPR-B method converges.

Proof. Let µ be an eigenvalue of Q−1BTA−1B and λ be an eigenvalue of Tω,1.
From equation (6), one can obtain the following quadratic equation for λ

(7) λ2 + (ωµ+ ω − 2)λ+ 1− ω = 0.

Applying Lemma 2.1 to (7), one easily obtains 0 < ω < 4
2+µ

. If 0 < ω < 4
2+µmax

,

then ρ(Tω,1) < 1, which completes the proof. �

Next theorem provides an optimal parameter ω for which the OPR-Bmethod
performs best.

Theorem 3.4. Let µmin and µmax be the minimum and maximum eigenvalues

of Q−1BTA−1B, respectively. Then the optimal parameter ω for the OPR-B

method is given by ω = ωo, where

ωo = min

{
4µmin

(1 + µmin)2
,

4µmax

(1 + µmax)2

}
.
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Moreover ρ(Tωo,1) =
√
1− ωo. That is,

ρ(Tωo,1) =

{
|1−µmin|

1+µmin
if ωo =

4µmin

(1+µmin)2

|1−µmax|

1+µmax
if ωo =

4µmax

(1+µmax)2
.

Proof. Let µ be an eigenvalue of Q−1BTA−1B and λ be an eigenvalue of Tω,1.
From the quadratic equation (7) for λ, one obtains two roots

λ =
1

2

(
(2 − ω − ωµ)±

√
ω2(1 + µ)2 − 4ωµ

)
.

Let f(ω) = 2 − ω − ωµ and g(ω) = ω2(1 + µ)2 − 4ωµ. The necessary and
sufficient condition for the roots λ to be real is g(ω) ≥ 0, which is equivalent
to ω ≥ 4µ

(1+µ)2 . Hence one obtains

(8) |λ| =

{
1
2 ( |f(ω)|+

√
g(ω) ) if 4µ

(1+µ)2 ≤ ω < 4
2+µmax√

1− ω if 0 < ω ≤ 4µ
(1+µ)2 .

Notice that 4µ
(1+µ)2 ∈ (0, 1] for µ > 0 and it has the maximum value 1 at

µ = 1. Also note that ∂
∂ω

(|f | +
√
g) = −sign(f)(1 + µ) + ω(µ+1)2−2µ

√
g

. Since

ω(µ+1)2−2µ
√
g

> 1 + µ, ∂
∂ω

(|f | +
√
g) > 0 for ω ≥ 4µ

(1+µ)2 . Hence 1
2 (|f | +

√
g) is

an increasing function for ω ≥ 4µ
(1+µ)2 . Clearly

√
1− ω is a decreasing function

for 0 < ω ≤ 4µ
(1+µ)2 . Thus, (8) implies that given µ, |λ| takes the minimum

√
1− ω = |1−µ|

1+µ
when ω = 4µ

(1+µ)2 . If S is a set containing all eigenvalues of

Q−1BTA−1B, then

min
ω

ρ(Tω,1) = max
µ

min
ω

|λ| = max
ω= 4 µ

(1+µ)2
, µ∈S

√
1− ω =

√
1− ωo,

where ωo = min
{

4µmin

(1+µmin)2
, 4µmax

(1+µmax)2

}
. Hence the theorem follows. �

We next consider semi-convergence of the OPRmethods for the consistent
singular saddle point problem (1), where B is rank-deficient with rank(B) <
n ≤ m. We first provide semi-convergence analysis for the OPR-A method.
Let λ be an eigenvalue of Tω,ω−1 and ( uv ) be the corresponding eigenvector.

Lemma 3.5. Suppose that ω > 0. Then λ = 1 if and only if u = 0.

Proof. This lemma can be proved similarly as was done in Lemma 3.7 in [22] �

Lemma 3.6 ([23]). Let S = M −N be a splitting of S with T = M−1N . Then

index(I − T ) = 1 if and only if for any y ∈ R(S)− {0}, y /∈ N(SM−1), where
R(S) and N(S) denote the range space and the null space of S, respectively.

Lemma 3.7. If ω > 0, then index(I − Tω,ω−1) = 1.
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Proof. Notice that 1
ω
A and Q are symmetric positive definite. Using Lemma

3.6, the proof of this theorem can be done similarly to that of Theorem 3.6
in [22]. �

Lemma 3.8. If 0 6= u ∈ N(BT ) and 0 < ω < 2, then |λ| < 1.

Proof. Since u 6= 0 and u ∈ N(BT ), from (3) and Lemma 3.5 v = 0. From
the first equation of (3), (1 − λ − ω)Au = 0. It follows that λ = 1 − ω. Since
0 < ω < 2, |λ| < 1 is obtained. �

Lemma 3.9. If u /∈ N(BT ) and µ = u∗BQ−1BTu
u∗Au

, then

|λ| < 1 if and only if 0 < ω < 2−
µ

2
.

Proof. Since u /∈ N(BT ), λ 6= 1 from Lemma 3.5. From (3), one obtains

(9) (1 − λ− ω) =
λ

λ− 1

u∗BQ−1BTu

u∗Au
=

λ

λ− 1
µ.

Notice that µ > 0 since u /∈ N(BT ). Rearranging (9), one has the following
real quadratic equation

(10) λ2 + (ω + µ− 2)λ+ 1− ω = 0.

Applying Lemma 2.1 to equation (10), one easily obtains

0 < ω < 2−
µ

2
,

which completes the proof. �

The following theorem provides semi-convergence result of the OPR-A meth-
od.

Theorem 3.10. Let µmax be the largest eigenvalue of Q−1BTA−1B. If 0 <
ω < 2− µmax

2 , then the OPR-A method is semi-convergent.

Proof. Let µmax = maxz 6=0
z∗BQ−1BT z

z∗Az
. Then it is easy to show that µmax is

equal to the largest eigenvalue of Q−1BTA−1B. From Lemmas 3.8 and 3.9,
ν(Tω,ω−1) < 1 is obtained when 0 < ω < 2 − µmax

2 . Since index(I − Tω,ω−1) =
1 from Lemma 3.7, Theorem 2.2 implies that the OPR-A method is semi-
convergent. �

Next theorem provides an optimal parameter ω and the corresponding op-
timal semi-convergence factor for the OPR-A method.

Theorem 3.11. Let µmin and µmax be the smallest and largest nonzero eigen-

values of Q−1BTA−1B, respectively. Assume that µmax < 4. Then the optimal

parameter ω for the OPR-A method is given by ω = ωo, where

(11) ωo = min{2
√
µmin − µmin, 2

√
µmax − µmax}.
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Moreover ν(Tωo,ω
−1
o
) =

√
1− ωo. That is,

(12) ν(Tωo,ω
−1
o
) =

{
|1−

√
µmin | if ωo = 2

√
µmin − µmin

|1−
√
µmax | if ωo = 2

√
µmax − µmax.

Proof. Notice that

Tω,ω−1 =

(
(1− ω)Im −ωA−1B

( 1
ω
− 1)Q−1BT In −Q−1BTA−1B

)
.

Assume that the rank of B is r, i.e., r = rank(B) < n. Let

B = WΣV ∗, Σ = (B1 0) ∈ R
m×n and B1 =

(
Σr

0

)
∈ R

m×r

be the singular value decomposition of B, where W and V are unitary matrices,
Σr = diag(σ1, σ2, . . . , σr) and σi’s are positive singular values of B. Let us
define an (m+ n)× (m+ n) unitary matrix P as

P =

(
W 0
0 V

)
.

If we let T̂ω,ω−1 = P∗Tω,ω−1P , Â = W ∗AW and Q̂ = V ∗QV , then by simple
calculation one obtains

(13) T̂ω,ω−1 =

(
(1− ω)Im −ωÂ−1Σ

( 1
ω
− 1)Q̂−1ΣT In − Q̂−1ΣT Â−1Σ

)
.

Assume that the unitary matrix V is partitioned into the block form V =
(V1 V2) with V1 ∈ R

n×r. Then (13) can be rewritten as

(14) T̂ω,ω−1 =

(
Ĥω,ω−1 0

L̂ω,ω−1 In−r

)
,

where

Ĥω,ω−1 =

(
(1− ω)Im −ωÂ−1B1

( 1
ω
− 1)V ∗

1 Q
−1V1B

T
1 Ir − V ∗

1 Q
−1V1B

T
1 Â

−1B1

)

and

L̂ω,ω−1 =
(
( 1
ω
− 1)V ∗

2 Q
−1V1B

T
1 −V ∗

2 Q
−1V1B

T
1 Â

−1B1

)
.

Since B1 is of full column rank, Ĥω,ω−1 is the iteration matrix of the OPR-A
method applied to the following nonsingular saddle point problem

(15)

(
Â B1

−BT
1 0

)(
x̂
ŷ

)
=

(
b̂
−q̂

)

with the preconditioning matrix Q̂1 = (V ∗
1 Q

−1V1)
−1. Hence, from (14) and

(15), one obtains

(16) ν(Tω,ω−1) = ν(T̂ω,ω−1) = ν(Ĥω,ω−1) = ρ(Ĥω,ω−1).
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From (16), it can be seen that finding an optimal parameter ω which mini-
mizes ν(Tω,ω−1) is equivalent to finding an optimal parameter ω which mini-

mizes ρ(Ĥω,ω−1). Applying Theorem 3.2 to (15), (11) and (12) are obtained,

where µmin and µmax are the smallest and largest eigenvalues of Q̂−1
1 BT

1 Â
−1B1

respectively. On the other hand

V ∗(Q−1BTA−1B)V = Q̂−1ΣT Â−1Σ

=

(
Q̂−1

1 BT
1 Â

−1B1 0

V ∗

2 Q
−1V1B

T
1 Â

−1B1 0

)
.

Hence µmin and µmax are also the smallest and largest nonzero eigenvalues of
the matrix Q−1BTA−1B, respectively. Therefore, the proof is complete. �

As can be seen from Theorems 3.10 and 3.11, one drawback of the OPR-A
method is that it may require a rather strong condition µmax < 4 which is not
generally true for some types of preconditioners Q. To remedy this problem,
we need to scale the preconditioner Q so that 0 < µmin, µmax < 4. From
Theorem 3.11, it can be also seen that in order to minimize ν(Tωo,ω

−1
o

), Q

needs to be scaled so that 2
√
µmin − µmin = 2

√
µmax − µmax. Next lemma

shows how to scale the preconditioner Q so that ν(Tωo,ω
−1
o
) can be minimized.

Lemma 3.12. Let Qs = sQ be a scaled preconditioner, where s > 0 is a scaling

factor, and let νmin and νmax be the smallest and largest nonzero eigenvalues

of Q−1
s BTA−1B, respectively. Then 2

√
νmin − νmin = 2

√
νmax − νmax if and

only if s =
(√

µmin+
√
µmax

2

)2

, where µmin and µmax denote the smallest and

largest nonzero eigenvalues of Q−1BTA−1B, respectively.

Proof. Since Q−1
s BTA−1B = 1

s
Q−1BTA−1B, νmin = µmin

s
and νmax = µmax

s
.

Using these relations, one obtains the following equivalent equations

2
√
νmin − νmin = 2

√
νmax − νmax,

2

√
µmin

s
−

µmin

s
= 2

√
µmax

s
−

µmax

s
,

2(
√
µmax −

√
µmin) =

µmax − µmin
√
s

.

(17)

Solving the third equation of (17) for s, s =
(√

µmin+
√
µmax

2

)2

is obtained. �

Next theorem provides an optimal parameter and an optimal semi-conver-
gence factor for the OPR-A method with the scaled preconditioner Qs which
is chosen by Lemma 3.12, and it also shows that 0 < νmin, νmax < 4.

Theorem 3.13. Let Qs = sQ be a scaled preconditioner, where s > 0 is

a scaling factor, and let νmin and νmax be the smallest and largest nonzero

eigenvalues of Q−1
s BTA−1B, respectively. Let µmin and µmax be the smallest
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and largest nonzero eigenvalues of Q−1BTA−1B, respectively. If s is chosen

such that s =
(√

µmin+
√
µmax

2

)2

, then 0 < νmin, νmax < 4 and

ω̃o = 2
√
νmin − νmin = 2

√
νmax − νmax =

4
√
µmin

√
µmax

(
√
µmax +

√
µmin)2

.

Moreover, the following holds

ν(T̃ω̃o,ω̃
−1
o
) = |1−

√
νmin | =

√
µmax −

√
µmin

√
µmax +

√
µmin

,

where ω̃o and ν(T̃ω̃o,ω̃
−1
o

) refer to the optimal parameter and the optimal semi-

convergence factor for the OPR-A with the scaled preconditioner Qs, respec-

tively.

Proof. From Lemma 3.12, 2
√
νmin − νmin = 2

√
νmax − νmax.

Since s =
(√

µmin+
√
µmax

2

)2

,

νmin =
µmin

s
=

4µmin

(
√
µmax +

√
µmin)2

< 4,

νmax =
µmax

s
=

4µmax

(
√
µmax +

√
µmin)2

< 4.

(18)

Using (18) and Theorem 3.11, one obtains the remaining relations

ω̃o = 2
√
νmin − νmin =

4
√
µmin

√
µmax

(
√
µmax +

√
µmin)2

,

ρ(T̃ω̃o,ω̃
−1
o
) = |1−

√
νmin | = |1−

√
νmax | =

√
µmax −

√
µmin

√
µmax +

√
µmin

.
�

From Theorem 3.13, it can be seen that the optimal semi-convergence factor
of the OPR-A method with the scaled preconditioner Qs is the same as that of
the PU method [24] with the preconditioner Q. Notice that the scaling factor
s in Theorem 3.13 can be easily computed using MATLAB by computing only
the largest and smallest nonzero eigenvalues of Q−1BTA−1B.

In a similar manner as was done in Theorems 3.10 and 3.11 for the OPR-A
method, we can obtain the following semi-convergence results for the OPR-B
method by using equation (6) and Theorem 3.4.

Theorem 3.14. Let µmax be the spectral radius of Q−1BTA−1B. If 0 < ω <
4

2+µmax
, then the OPR-B method is semi-convergent.

Theorem 3.15. Let µmin and µmax be the smallest and largest nonzero eigen-

values of Q−1BTA−1B, respectively. Then the optimal parameter ω for the

OPR-B method is given by ω = ωo, where

ωo = min

{
4µmin

(1 + µmin)2
,

4µmax

(1 + µmax)2

}
.
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Moreover ν(Tωo,1) =
√
1− ωo. That is,

ν(Tωo,1) =

{
|1−µmin|

1+µmin
if ωo = 4µmin

(1+µmin)2

|1−µmax|

1+µmax
if ωo = 4µmax

(1+µmax)2
.

From Theorem 3.15, it can be seen that in order to minimize ν(Tωo,1), the
preconditioner Q needs to be scaled so that

4µmin

(1 + µmin)2
=

4µmax

(1 + µmax)2
.

Next theorem shows how to choose a scaled preconditioner Qs = sQ such
that ν(Tωo,1) can be minimized, and it provides an optimal parameter and
an optimal semi-convergence factor for the OPR-B method with the scaled
preconditioner Qs.

Theorem 3.16. Let µmin and µmax be the smallest and largest nonzero eigen-

values of Q−1BTA−1B, respectively. Let Qs = sQ be a scaled preconditioner,

where s > 0 is a scaling factor, and let νmin and νmax be the smallest and

largest nonzero eigenvalues of Q−1
s BTA−1B, respectively. If s =

√
µmin µmax,

then 4 νmin

(1+νmin)2
= 4 νmax

(1+νmax)2
. Moreover

ω̃o =
4 νmin

(1 + νmin)2
=

4
√
µmin

√
µmax

(
√
µmax +

√
µmin)2

and

ν(T̃ω̃o,1) =
|1− νmin|

1 + νmin
=

|1− νmax|

1 + νmax
=

√
µmax −

√
µmin

√
µmax +

√
µmin

,

where ω̃o and ν(T̃ω̃o,1) refer to the optimal parameter and the optimal semi-

convergence factor for the OPR-B method with the scaled preconditioner Qs,

respectively.

Proof. Since Q−1
s BTA−1B = 1

s
Q−1BTA−1B, νmin = µmin

s
and νmax = µmax

s
.

Since s =
√
µmin µmax, one obtains

(19) νmin =

√
µmin

µmax
and νmax =

√
µmax

µmin

Using (19) and Theorem 3.15, it can be easily shown that

ω̃o =
4 νmin

(1 + νmin)2
=

4 νmax

(1 + νmax)2
=

4
√
µmin

√
µmax

(
√
µmax +

√
µmin)2

,

ν(T̃ω̃o,1) =
|1− νmin|

1 + νmin
=

|1− νmax|

1 + νmax
=

√
µmax −

√
µmin

√
µmax +

√
µmin

.

Hence the proof is complete. �

From Theorem 3.16, it can be also seen that optimal convergence factor of
the OPR-B method with the scaled preconditioner Qs is the same as that of
the PU method with the preconditioner Q.
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4. Numerical results

In this section, we provide numerical experiments to examine the effective-
ness of the OPR methods by comparing their performance with the PU method
with optimal parameters. To see how much semi-convergence rate of the OPR
methods can be accelerated, we provide performance results of both the OPR
methods and the OPR methods with scaled preconditioners Qs = sQ and
Qs+ǫ = (s+ ǫ)Q, where s is the scaling factor defined in Theorems 3.13 or 3.16,
and ǫ is a positive number which is chosen appropriately small as compared
with s. In Tables 2 to 5, Iter denotes the number of iteration steps and CPU

denotes the elapsed CPU time in seconds. In all experiments, the right hand
side vector (bT ,−qT )T ∈ R

m+n was chosen such that the exact solution of the
saddle point problem (1) is (xT

∗
, yT

∗
)T = (1, 1, . . . , 1)T ∈ R

m+n, and the initial
vector was set to the zero vector. All iterations for the singular saddle point
problem are terminated if the current iteration satisfies RES < 10−6, where
RES is defined by

RES =

√
‖b− Axk −Byk‖2 + ‖q −BTxk‖2√

‖b‖2 + ‖q‖2
,

where ‖·‖ denotes the L2-norm.

Example 4.1. Consider the Stokes equations of the following form: find u

and v such that

(20)

{
−△u+∇w = f in Ω

−∇ · u = 0 in Ω,

where Ω = (0, 1)×(0, 1), u is a vector-valued function representing the velocity,
and w is a scalar function representing the pressure. The boundary conditions
are u = (0, 0)T on the three fixed walls (x = 0, y = 0, x = 1) and u =
(1, 0)T on the moving wall (y = 1). Dividing Ω into a uniform grid with
mesh size h = 1

p
and discretizing (20) by using MAC (marker and cell) finite

difference scheme [7, 11], the singular saddle point problem (1) is obtained,
where A ∈ R

2p(p−1)×2p(p−1) is a symmetric positive definite matrix and B =(
B̂ B̃

)
∈ R

2p(p−1)×p2

is a rank-deficient matrix of rank(B) = p2 − 1 with

B̂ ∈ R
2p(p−1)×(p2

−1) and B̃ ∈ R
2p(p−1). For this example, m = 2p(p− 1) and

n = p2. Thus the total number of variables is 3p2−2p. Numerical results for this
example are listed in Tables 2 and 3. In Table 2, numerical results for the OPR-
B method are not listed since it converge so slowly (Iter > 2000). In Table 3,
numerical results for the OPRmethods are not listed since they do not converge
because of µmax > 4. See Table 1 for the values of µmax = ρ(Q−1BTA−1B).

Example 4.2. We consider the singular saddle point problem (1) used in [24],
in which

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R

2p2
×2p2

,
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B =
(
B̂ B̃

)
=

(
B̂ b1 b2

)
∈ R

2p2
×(p2+2), B̂ =

(
I ⊗ F
F ⊗ I

)
∈ R

2p2
×p2

,

b1 = B̂

(
ep2/2

0

)
, b2 = B̂

(
0

ep2/2

)
, ep2/2 = (1, 1, . . . , 1)T ∈ R

p2/2,

T =
1

h2
· tridiag(−1, 2,−1) ∈ R

p×p, F =
1

h
· tridiag(−1, 1, 0) ∈ R

p×p,

with ⊗ denoting the Kronecker product and h = 1
p+1 the discretization mesh

size. For this example, m = 2p2 and n = p2 + 2. Thus the total number of
variables is 3p2 +2. Clearly B is a rank-deficient matrix of rank(B) = p2 < n.
Numerical results for this example are listed in Tables 4 and 5. In Table 5,
numerical results for the OPRmethods are not listed since they do not converge
because of µmax > 4 (see Table 1).

We choose the preconditioning matricesQ as an approximation to the matrix
BTA−1B, according to two cases listed in Table 1, where Q̂ denotes a block di-
agonal matrix consisting of two submatrices B̂T Â−1B̂ and B̃T B̃. All numerical
tests are carried out on a PC equipped with Intel Core i5-4570 3.2GHz CPU and
8GB RAM using MATLAB R2015a. For test runs of the OPRmethods with the
scaled preconditionerQs+ǫ, we have tried the values of ǫ ∈ [1×10−d, 5×10−d] in
Tables 2 to 5, where d is chosen to be 2, 3 or 4 depending upon the size of s. For
all of these values of ǫ, the OPR methods with Qs+ǫ performs at least as well
as the PU method, and the value of ǫ reported in Tables 2 to 5 is the best one
out of test runs for five different values of ǫ, i.e., ǫ = k× 10−d (k = 1, 2, 3, 4, 5).
According to numerical experiments, it is recommended that a near optimal
value of ǫ may be chosen by the following rule:

when 0.01 ≤ s < 1, choose ǫ such that ǫ ∈ [ 1× 10−4, 5× 10−4 ]
when 1 ≤ s < 10, choose ǫ such that ǫ ∈ [ 1× 10−3, 4× 10−3 ]
when 10 ≤ s < 100, choose ǫ such that ǫ ∈ [ 1× 10−2, 3× 10−2 ].

As can be expected from the theorems described in Section 3, the OPR
methods with the scaled preconditioner Qs perform as well as the PU method.
The OPR methods with the scaled preconditioner Qs+ǫ perform better than
the PU method. More specifically, they perform significantly better than PU
method for Example 4.1 and Case II of Example 4.2 where µmax > 4 (see Tables
2 to 5).

Table 1. Choices of the matrix Q with Q̂ = Diag(B̂T Â−1B̂, B̃T B̃) and
the values of µmax = ρ(Q−1BTA−1B) for Examples 4.1 and 4.2

Example 4.1(µmax) Example 4.2(µmax)
Case Number Q n = 576 n = 1024 n = 578 n = 1026 Description

I tridiag(Q̂) 1.785 1.821 1.668 1.696 Â = tridiag(A)

II Q̂ 102.8 181.9 98.40 169.7 Â = diag(A)
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Table 2. Numerical results for Example 4.1 with Case I of Q.

m 1104 1984
n 576 1024

PU ωo 0.0949 0.0707
τo 22.49 29.94
Iter 452 630
CPU 0.468 1.142

OPR-A ωo 0.0655 0.0489
Iter 473 637
CPU 0.488 1.147

OPR-A with Qs ωo 0.0946 0.0707
s 0.4687 0.4721

Iter 453 630
CPU 0.468 1.142

OPR-A with Qs+ǫ ωo 0.0948 0.0707
(s is the same as above) ǫ 0.0003 0.0002

Iter 340 464
CPU 0.352 0.843

OPR-B with Qs ωo 0.0947 0.0705
s 0.0444 0.0333

Iter 452 632
CPU 0.468 1.143

OPR-B with Qs+ǫ ωo 0.0942 0.0703
(s is the same as above) ǫ 0.0004 0.0003

Iter 332 456
CPU 0.344 0.829

Table 3. Numerical results for Example 4.1 with Case II of Q.

m 1104 1984
n 576 1024

PU ωo 0.2442 0.1895
τo 0.1392 0.1047
Iter 132 177
CPU 0.176 0.420

OPR-A with Qs ωo 0.2440 0.1895
s 29.42 50.38

Iter 132 177
CPU 0.176 0.420

OPR-A with Qs+ǫ ωo 0.2442 0.1895
(s is the same as above) ǫ 0.01 0.03

Iter 100 127
CPU 0.131 0.300

OPR-B with Qs ωo 0.2442 0.1895
s 7.185 9.549

Iter 132 173
CPU 0.176 0.407

OPR-B with Qs+ǫ ωo 0.2441 0.1895
(s is the same as above) ǫ 0.004 0.002

Iter 100 145
CPU 0.131 0.342

5. Conclusions

We introduced two one-parameter relaxation (OPR) iterative methods for
solving the singular saddle point problems whose semi-convergence rate can
be accelerated by using scaled preconditioners. Both theoretical and computa-
tional results show that the OPR methods with the scaled preconditioner Qs

performs as well as the PU method with optimal parameters. In addition, the
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Table 4. Numerical results for Example 4.2 with Case I of Q.

m 1152 2048
n 578 1026

PU ωo 0.5622 0.5115
τo 2.9447 3.3270
Iter 44 52
CPU 0.048 0.097

OPR-A ωo 0.4568 0.4083
Iter 51 59
CPU 0.055 0.109

OPR-A with Qs ωo 0.5622 0.5115
s 0.6040 0.5877

Iter 44 51
CPU 0.048 0.094

OPR-A with Qs+ǫ ωo 0.5621 0.5113
(s is the same as above) ǫ 0.0004 0.0005

Iter 41 45
CPU 0.045 0.083

OPR-B ωo 0.2420 0.1920
Iter 111 144
CPU 0.119 0.263

OPR-B with Qs ωo 0.5622 0.5114
s 0.3396 0.3006

Iter 44 51
CPU 0.048 0.094

OPR-B with Qs+ǫ ωo 0.5619 0.5112
(s is the same as above) ǫ 0.0003 0.0002

Iter 38 46
CPU 0.041 0.085

Table 5. Numerical results for Example 4.2 with Case II of Q.

m 1152 2048
n 578 1026

PU ωo 0.2489 0.1956
τo 0.1423 0.1084
Iter 131 174
CPU 0.174 0.410

OPR-A with Qs ωo 0.2489 0.1954
s 28.24 47.15

Iter 131 174
CPU 0.174 0.410

OPR-A with Qs+ǫ ωo 0.2488 0.1955
(s is the same as above) ǫ 0.02 0.03

Iter 110 131
CPU 0.146 0.313

OPR-B with Qs ωo 0.2489 0.1955
s 7.028 9.221

Iter 131 174
CPU 0.174 0.410

OPR-B with Qs+ǫ ωo 0.2488 0.1955
(s is the same as above) ǫ 0.004 0.001

Iter 98 128
CPU 0.129 0.305

OPR methods with the scaled preconditioner Qs+ǫ perform better than the
PU method. More specifically, the OPR methods with Qs+ǫ perform signifi-
cantly better than the PU method for Example 4.1 and Case II of Example 4.2
where µmax > 4 (see Tables 2 to 5). Hence, it may be concluded that the OPR
methods with the scaled preconditioner Qs+ǫ are recommended for use when
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solving the singular saddle point problems. Also we provided how to choose a
near optimal value of ǫ (see Section 4). Also notice that computations of µmax

and µmin which are needed in order to find optimal parameters can be easily
computed using the powerful Computer Algebra System such as MATLAB.

Acknowledgements. The author would like to thank the anonymous referees
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