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OMORI-YAU MAXIMUM PRINCIPLE

ON ALEXANDROV SPACES

Hanjin Lee

Abstract. We prove an Omori-Yau maximum principle on Alexandrov
spaces which do not have Perelman singular points and satisfy the infin-
itesimal Bishop-Gromov condition.

1. Introduction

The purpose of this article is to extend the following maximum principle by
Omori [10] and Yau [18] to Alexandrov spaces.

Theorem 1.1. Let M be a complete Riemannian manifold of dimension ≥ 2
with Ricci curvature bounded below. For every C2-smooth function u : M → R

that is bounded from above, there exists a sequence {pk} in M such that

lim
k→∞

u(pk) = sup
M

f, lim
k→∞

‖∇u(pk)‖ = 0, lim sup
k→∞

∆u(pk) ≤ 0.

This theorem has various applications in differential geometry and geometric
analysis (for example, see [16], [19]).

Alexandrov spaces arise as the Gromov-Hausdorff limits of n-dimensional,
compact Riemannian manifolds with sectional curvature ≥ κ and diameter
≤ D. Thus it is natural to ask whether the key geometric analysis theorems
on Riemannian manifolds extend to Alexandrov spaces.

The notion of curvature lower bound for Alexandrov spaces generalizes the
notion of lower bound of sectional curvature. Kuwae and Shioya introduced the

infinitesimal Bishop-Gromov condition BG (κ, n), which generalizes the notion
of lower bound of Ricci curvature (see [7]). On the other hand, Zhang and Zhu
introduced a stronger notion called the condition RC, which is based on the
second variation formula of arc length (see [20]).

Laplacian comparison of the distance function is one of the key ingredients
in the proof of the Omori-Yau maximum principle. On Alexnadrov spaces,
Laplacian comparison of the distance was proved by Petrunin [13], von Renesse
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[17], Kuwae and Shioya [6], [8] and Zhang and Zhu [20]. The first two results
were obtained under the curvature lower bound condition and the last two
results were obtained under the generalized Ricci lower bound condition. Our
result is based on [6].

An Alexandrov space has a C1-structure on its subset of regular points. It is
extended to DC1-structure on Perelman regular sets, which enables one to per-
form the second order differential calculus forDC-functions (see Definition 2.3).
Following [5] and [6] we consider DC-Laplacian ∆DCu, which is the distribu-
tional Laplacian div(∇u), for DC-function u. Alexandrov spaces considered in
this article allow only mild singularities, the so-called Perelman regular points.
Since such Alexandrov spaces are DC-manifolds (see Definition 2.4), we can
reduce Laplacian comparison of DC-functions to gradient comparison of them
through the Gauss-Green formula.

We introduce the conditions of being regularly exhausting and of volume

regularity to handle a behavior of concentric geodesic spheres and the Jaco-
bian determinant of the exponential map (see Definitions 3.2 and 3.5). We
impose the following additional assumptions to apply the Laplacian compar-
ison theorem on the distance functions (see [6]): Let (gij) be a Riemannian
metric on the subset of regular points of Alexandrov space X , which is com-
patible with the metric of X . Denote k-dimensional Hausdorff measure by hk.
There exist a compact set K ⊂ X, a point x0 ∈ X, and a positive number δ
such that each geodesic sphere Sr(x) satisfies hn−1(Cut(x0) ∩ Sr(x)) = 0 and

|Dkgij |(Sr(x)) = 0 for i, j, k = 1, . . . , n and for 0 < r < δ whenever a geodesic

ball Bδ(x) ⊂ X \ K (See Definition 2.6 and Theorem 2.10 for the detail).

Set Lip(u)(p) = limr→0+ supx 6=y∈Br(p)
|u(x)−u(y)|

|x−y|
. Our main theorem is the

following Omori-Yau maximum principle:

Theorem 1.2. Let X be an noncompact Alexandrov space of dimension n ≥ 2,
with empty Perelman singular set. Suppose that X satisfies the condition BG

(κ, n). If, in addition, X is α-volume regular (α ≥ 1) and regularly exhausting,

then for every DC1-function u : X → R bounded from above such that it attains

its supremum nowhere in X and Lip(u)(p) → 0 as p moves away from a fixed

point and for any ǫ > 0, there exist a point pǫ ∈ X and a positive number Rǫ

such that

u(pǫ) ≥ sup
X

u− ǫ,
1

V ol(BRǫ
(pǫ))

∫

BRǫ(pǫ)

∆DCu ≤ ǫ.

Remark 1.3. In general, the gradient estimate of the original Omori-Yau max-
imum principle does not hold for bounded DC-functions even on complete
smooth Riemannian manifolds with lower Ricci bound. The following example
shows why we need the asymptotic vanishing condition for Lipschitz constants
of bounded DC-functions in the main theorem. This condition replaces the
gradient estimate for bounded C2-smooth functions on Riemannian manifolds
in the classic Omori-Yau maximum principle. Let φ(t) = 1− e−t and define a
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function U : R+ → R
+,

U(t) =

{
φ(2n+ 1)(t− 2n) if 2n ≤ t < 2n+ 1

−φ(2n+ 1)(t− (2n+ 2)) if 2n+ 1 ≤ t < 2n+ 2

for n = 0, 1, . . .. Then the function u(x) = U(|x|) for x ∈ R
2 is a DC-function

bounded above such that it does not attain supremum anywhere. In particular,
it holds that ‖∇u(x)‖ = φ(2n + 1) ≥ φ(1) > 0 if 2n < |x| < 2n + 1 or
2n+ 1 < |x| < 2n+ 2 for each n.

Example 1.4. The following polyhedral surface S with infinite genus satisfies
the conditions of Theorem 1.2. Consider a cube Q ⊂ R

3 of which vertices are
(±2,±2, 0), (±2,±2, 2). Consider a smoothing of Q as follows. Replace the
eight corners of Q with flat surfaces. For instance, at the corner (2, 2, 2), take
a plane passing through (2, 1.9, 2), (1.9, 2, 2), (2, 2, 1.9) and cut out the smaller
part of Q by this plane. Then these three points become the new corners
there. Denote the resulting smoothed cube by Qs. Since each new corner
point is locally circular conic with angle > 3π/2, every singular point of Qs is
Perelman regular (see Definition 2.5).

The polyhedral torus T is obtained from Qs as follows. We construct an
inner part of the torus as follows. Let z = f(x) be a smooth convex decreasing

function over (1/2, 3/2) satisfying f(1/2) = 1, f(3/2) = 0 and dnx
dzn |x=1/2 = 0,

f (n)(3/2) = 0 up to n = 3. Consider the curve consisting of the graph of
z = f(x) and its reflection about z = 1. Consider the surface of revolution
of this curve about z-axis. Cut out disks of radius 3/2 from the top and
the bottom of Qs, whose center is respectively (0, 0, 2) and (0, 0, 0). Glue the
surface just obtained along the two circles of the top and the bottom of the
punctured Qs, then we obtain the singular torus T . Then the convex part of T
is a surface of curvature ≥ 0 and the concave part of T has Gaussian curvature
bounded by a negative constant up to the boundaries.

The connector of two copies of T is constructed as follows. Let s = g(t) be
a smooth convex decreasing function over (1/3, 2/3) satisfying g(1/3) = 1/3,

g(2/3) = 0 and dnt
dsn

|t=1/3 = 0, g(n)(2/3) = 0 up to n = 3. The surface of
revolution of s = f(t) about s-axis is taken as a connector. The connector has
the boundaries of the circles of radius 1/3 and 2/3. To glue two copies of T ,
make a circular hole on a side face of each copy of T and put the connector along
the larger boundary. Then glue two connectors along the smaller boundaries of
the connectors. Then a neighborhood of the connectors in T ♯T is C3-smooth
Riemannian surface with lower Gaussian curvature bound.

The surface S is obtained by gluing infinite number of copies of T in one
direction. Since S is an Alexandrov surface of curvature bounded below by neg-
ative constant, it satisfies condition BG. Two technical conditions for Laplacian
comparison Theorem 2.10 are satisfied for S. For the first condition, take a
point x0 on the copy of T which has only one connector. Then Cut(x0) consists
of big circles along the inner torus parts of the copies of T , geodesics which
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are along the connectors and vertical to the boundaries of connectors, and sin-
gular points of S. Thus the intersection of Cut(x0) with each small geodesic
circle has Hausdorff codimension 2. For the second condition, notice that the
compatible Riemannian metric (gij) has an approximate limit at each regular
point of S and the subset of singular points in each small geodesic circle in S
has Hausdorff codimension 2 (See Definition 3.63 of [1]). By Lemma 3.76 of
[1], |Dkgij | vanishes on each small geodesic circle in S for i, j, k = 1, 2. Two
geometric regularity conditions are also satisfied for S. Since circular cone type
singular points satisfy 1-volume regular condition, S is 1-volume regular (see
Definition 3.2 and Example 3.4). It is clear that each circular cone type singular
point is regularly exhausting, since the subspace of directions realizing length
r geodesics from the conic singular point does not depend on r (see Definition
3.5 and (3.3)). Thus S is regularly exhausting.

As an application of Theorem 1.2, we prove the following Liouville type
theorem:

Theorem 1.5. Let X be a noncompact Alexandrov space satisfying the assump-

tion of Theorem 1.2. Let F : R+ → R
+ be a continuous, increasing function

with F (0) = 0. Suppose that u is a non-negative, bounded DC1-solution of

∆DCu = F (u)hn. If u attains its supremum nowhere in X, and Lip(u)(p) → 0
as p moves away from a fixed point, then u ≡ 0.

2. Preliminaries

In this section, we introduce the basic definitions and properties of Alexan-
drov spaces. We refer to [3], [4], [11].

A complete locally compact metric space (X, | · |) is called a geodesic space

if for any two points p, q ∈ X there exists a geodesic pq. A triangle △pqr in
X means a set of three points p, q, r ∈ X , and of three geodesics pq, qr, rp.
A κ-plane means a two dimensional complete simply-connected Riemannian
manifold of curvature κ. We say that X satisfies Alexandrov convexity if for
each x ∈ X there exist a neighborhood Ux of x and a real number κ, the
following hold: for any △pqr in Ux, there exists a triangle △p̃q̃r̃ in κ-plane
satisfying |pq| = |p̃q̃|, |qr| = |q̃r̃|, |rp| = |r̃p̃| such that for any y ∈ pq, z ∈ pr,
ỹ ∈ p̃q̃, z̃ ∈ p̃r̃ with |py| = |p̃ỹ|, |pz| = |p̃z̃|, we have |yz| ≥ |ỹz̃|.

Definition 2.1. A metric space X is called an Alexandrov space if it is a com-
plete locally compact geodesic space such that it satisfies Alexandrov convexity
and has a finite Hausdorff dimension.

For p, q, r ∈ X , the angle ∠κpqr is defined to be the angle at the ver-
tex q̃ of the comparison triangle △p̃q̃r̃ in κ-plane. Let γ and σ be geodesics
with the origin p. The angle between γ and σ is defined to be α(γ, σ) =
lims,t→0+ ∠κγ(s)p σ(t). The metric space Σ′

p is the set of equivalence classes
of geodesics with the origin p endowed with a metric in which the distance is
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the angle between the geodesics starting at p. The metric completion of Σ′
p is

called the space of direction at p, which is denoted by Σp.

Definition 2.2. The tangent cone Tp is the Euclidean cone over the space of
direction Σp. Its element is denoted by v = tγ where γ is a geodesic direction
and t ∈ [0,∞]. Let op denote the vertex of Tp. For v = tγ, and w = sσ ∈ Tp,
the metric of the cone is defined by |vw| = t2 + s2 − 2ts cosα(γ, σ).

A point p ∈ X is said to be regular if Tp is isometric to Euclidean space
and singular otherwise. Denote by Reg(X) (resp. Sing(X)) the set of regular
(resp. singular) points of X . The Hausdorff dimension of Sing(X) is ≤ n− 1.

For any p ∈ X , a point x ∈ X is said to be a cut point of p if any minimal
segment py does not contain x in its interior. Denote by Cp the set of all cut
points of p. Then hn(Cp) = 0 for each p ∈ X . Define a map logp : X \Cp → Tp

by logp(x) := |px|vpx for x ∈ X \Cp, where vpx ∈ Σp is the direction of geodesic
px. Set Dp = logp(X \ Cp). Consider the inverse map expp : Dp → X of logp,
which is called the exponential map at p. Then expp is Lipschitz on Dp∩Br(op)
for any r > 0 by Alexandrov convexity.

A C1-structure can be established on Reg(X) in the following sense: there
is an atlas (Uα, φα) on Reg(X), such that if Uα ∩ Uβ 6= ∅, then φβ ◦ φ−1

α :
φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) is C

1 on φα(Uα ∩ Uβ ∩Reg(X)).
There exists a natural C0-Riemannian metric g on Reg(X) such that its

induced distance is compatible with the metric of X and the volume form
induced from g also coincides with n-dimensional Hausdorff measure.

Definition 2.3. A Lipschitz function f : Rn → R is called DC if it is locally
representable as the difference of two semi-concave functions.

Let U ⊂ R
n be any open set. A Lipschitz map F = (f1, . . . , fm) : U → R

m

is called DC if each fi is DC. If for an open set V ⊂ R
m, F : U → V and

G : V → R
m are DC-maps, then G ◦ F is DC.

Definition 2.4. Let Y be a paracompact Hausdorff topological space with
dimension n. A family {(Uα, φα)} of local charts of Y is called DC-atlas on Y
if φβ ◦φ

−1
α : φα(Uα∩Uβ) → φβ(Uα∩Uβ) is DC-map whenever Uα∩Uβ 6= ∅. If a

maximal n-dimensional DC atlas on Y is determined, Y is called DC-manifold.
Additionally, if each DC-atlas is C1-atlas on Y \ Sing(Y ), then it is called
DC1-chart.

Definition 2.5 ([12]). Let X be an Alexandrov space. A point p ∈ X is called
Perelman regular if Σp contains n + 1 directions making obtuse angles with
each other.

The set of all Perelamn regular points is an open and convex subset of X ,
and includes Reg(X). Furthermore, it is DC1-manifold.

Definition 2.6. An L1-function f : U(⊂ R
n) → R is called BV (bounded

variation)-function if its distributional derivatives Dif , i = 1, . . . , n, are all
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finite Radon measures. The total variation measure of Dif is denoted by |Dif |
and defined as follows: for each measurable set E,

|Dif |(E) = sup{
∑

∞

h=1 |Di(Eh)| : Eh measurable and pairwise disjoint,

E = ∪∞

h=1Eh}.

It is known that if f is DC-function on U ⊂ R
n, then Dif , i = 1, . . . , n, are

a.e. determined as BV-functions. Thus DiDjf , i, j = 1, . . . , n, are determined
as signed Radon measures. It is known that canonical Riemannian metric
g = (gij) of the Alexandrov space X is BV. Take local coordinates (x1, . . . , xn)

on the Alexandrov space X . A vector field Z =
∑

i Zi
∂

∂xi
is said to be BV if

each Zi is BV-function.

Definition 2.7. For a locally BV-vector field Z on Ω ⊂ X , the distributional
divergence of Z is defined by

divZ :=
∑

i

∂

∂xi
(
√
det(gij)Z

i) dx1 ∧ · · · ∧ dxn

where (x1, . . . , xn) are local coordinates on Ω and Z =
∑

i Z
i ∂
∂xi

. Let ∇u =∑
i g

ij ∂u
∂xj

∂
∂xi

be a gradient vector field of DC-function u. Then the DC-

Laplacian ∆DCu is defined by

∆DCu := div∇u.

For any DC-local chart (U,ϕ) of X , a function f : U → R is DC1 if and only
if f ◦ ϕ−1 : ϕ(U) → R is DC and C1 on ϕ(U ∩Reg(X)). A subset N of DC1-
manifold X is called a DC1-hypersurface of X if for each x ∈ N there exists a
DC1-local chart (U,ϕ) around x, an open set W ⊂ R

n−1, and a DC1-function
h on W , such that ϕ(N ∩ U) is a graph of h.

Kuwae, Machigashira, and Shioya [5] showed that Gauss-Green formula
holds for domains whose boundaries are DC-hypersurfaces:

Proposition 2.8 (Gauss-Green formula). Let D ⊂ X be an orientable compact

subset bounded by a DC1-hypersurface. Then, for any DC1-function u on D̄,
∫

D

∆DCu =

∫

∂D

〈∇u, ν〉ω∂D

where ν is the outward normal vector on ∂D, 〈·, ·〉 denotes the inner product

induced from the metric g, and ω∂D is a volume form induced from the canonical

Riemannian metric g that coincides with hn−1.

For κ ∈ R, set

sκ(r) =





sin(
√
κ)/

√
κ κ > 0

r κ = 0

sinh(
√
|κ|)/

√
|κ| κ < 0.
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Define a map Φp,t : Wp,t → X as follows: x ∈ Wp,t if and only if there exists
y ∈ X such that x ∈ py and |px| : |py| = t : 1. For each x ∈ Wp,t, such a point
y is unique and we set Φp,t(x) := y.

Definition 2.9 (Infinitesimal Bishop-Gromov condition, [6]). An Alexandrov
space X is said to satisfy condition BG (κ, n) if for each p ∈ X the following
holds:

d((Φp,t)∗H
n)(x) ≥

tsκ(t|px|)
n−1

sκ(|px|)n−1
dHn(x)

for any x ∈ X and t ∈ (0, 1] such that |px| < π/
√
κ if κ > 0, where (Φp,t)∗H

n

is the push-forward of Hausdorff measure by Φp,t.

For an n-dimensional complete Riemannian manifold, BG (κ, n) holds if and
only if the Ricci curvature satisfies Ric ≥ (n − 1)κ (see [9]). Any Alexandrov
space of curvature ≥ κ satisfies BG (κ, n) (see [7]).

The following Laplacian comparison theorem for the distance functions holds
under condition BG (κ, n). Let x0 be a fixed point of X . Set r0(x) = |x0x|
and cotκ(r) = s′κ(r)/sκ(r). For a BV-Riemannian metric (gij) on Reg(X),
recall that Dkgij means distributional derivative and |Dkgij | means the total
variation measure of Dkgij .

Theorem 2.10 (Kuwae-Shioya, [6]). Let X be an Alexandrov space of dimen-

sion n ≥ 2. If X satisfies condition BG(κ, n), then one has
∫

E

∆DCr0 ≤ (n− 1) sup
x∈E

cotκ ◦r0(x)hn(E)

for any compact region E ⊂ X∗ \ {x0} with Lipschitz boundary satisfying

hn−1(Cut(X0) ∩ ∂E) = 0, |Dkgij |(∂E) = 0 for all i, j, k = 1, . . . , n.

3. Proof of main theorem

We use the following elementary fact:

Lemma 3.1. Let ϕ be a Lipschitz continuous function on [0, a). Suppose that

ϕ(0) = 0, ϕ(t) ≥ 0 on [0, a). Then there exists a sequence (tk) such that tk → 0
and ϕ′(tk) ≥ 0.

Proof. Suppose otherwise. Then there exists r ∈ (0, a) such that u′ < 0 on
(0, r) a.e. For each t ∈ (0, r),

ϕ(t)− ϕ(0) =

∫ t

0

ϕ′(τ)dτ < 0

which implies that ϕ(t) < 0. It is a contradiction. �

Let Sr(p) denote the geodesic sphere in X , centered at p with radius r.
For ease of notation, set Ar = hn−1(Sr(p)) for the fixed point p. Define the
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spherical mean of f at p as follows:

f̄(r) :=
1

Ar

∫

Sr(p)

f dhn−1.(3.1)

Since an exponential map at p is Lipschitz continuous on Dp ∩Br(op) ⊂ Tp

for each r > 0,

(3.2)

∫

Bt(p)

fdhn =

∫

logp(Bt(p)\Cp)

f ◦ expp(z)

[
d((expp)

∗hn)

dhn
(z)

]
dhn(z).

Define, for 0 < r < t

Ωp(r) = {θ ∈ Σp : there exists unique x ∈ X such that px ∼ θ and |px| = r}.

Then

(3.3) logp(Bt(p)\Cp) = logp(∪0≤r<tSr(p)\Cp) = (∪0<r<t{r} × Ωp(r))∪{op}

and (3.2) is expressed as
∫ t

0

∫

Ωp(r)

f ◦ expp(rθ)

[
d((expp)

∗hn)

dhn
(rθ)

]
rn−1drdhn−1(θ).

Define

J(r, θ) =

[
d((expp)

∗hn)

dhn
(rθ)

]
rn−1.(3.4)

Then by the coarea formula (see [2], Theorem 9.4)
∫

Sr(p)

f(x)dhn−1 =

∫

Ωp(r)

f ◦ expp(rθ)J(r, θ)dhn−1(θ).

For ease of notation, let f̃θ(r) = f ◦ expp(rθ).

Definition 3.2. An Alexandrov space X is said to be α-volume regular at

p ∈ X if there exist positive numbers r > 0 and α ≥ 1, and a Lipschitz
continuous function E such that

(3.5)
d((expp)

∗hn)

dhn
(z) = 1 + E(z)|z|α for z ∈ logp(Br(p) \ Cp).

An Alexandrov space X is said to be α-volume regular if it is α-volume regular
at every point of X .

Remark 3.3. If X is a smooth Riemannian manifold, then

E(z)|z|2 = −
1

6
Ric(z, z) + o(|z|2).

Thus X satisfies 2-volume regular. Our condition is similar to that of volume

regularity used in [17]. In some sense, our condition is stronger than that of
von Renesse.
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Example 3.4. The elliptic cone EC(S) over a circle S of diameter 3
4π is the

quotient space
EC(S) = S × [0,∞)/ ∼,

where x1 = (θ1, r1) ∼ x2 = (θ2, r2) ⇔ r1 = r2 = 0 with the metric cosh |x1x2| =
cosh r1 cosh r2 − sinh r1 sinh r2 cos |θ1θ2|. The elliptic cone is 1-volume regular
at the vertex point O : one has for rθ ∈ TO, r ≪ 1 and δ ≪ 1

d(expO)
∗h2

dh2
(rθ) ≈

| expO(rθ), expO(r(θ + δ))|

|rθ, r(θ + δ)|

=
cosh−1(cosh2 r − sinh2 r cos δ)

r
√

2(1− cos δ)

≈

(
sinh r

r

)
(
√
η +

√
1 + η)

where η = sin2( δ2 ) sinh
2 r. It suffices to show that 1

r

((
sinh r

r

)
(
√
η +

√
1 + η)−1

)

is Lipschitz in r. Set F1 = sinh r−r
r2

and F2 =
√
η+

√
1 + η− 1. Then the above

equation is (1+rF1)(1+F2)−1
r

. It is Lipschitz in r since F1, F2 and
F2

r
are Lipschitz

in r.

Definition 3.5. A singular point p in an Alexandrov spaceX is called regularly

exhausting if hn−1(Ωp(r)) is Lipschitz continuous in r. An Alexandrov space X
is said to be regularly exhausting if every singular point of X is regularly ex-
hausting and supp∈X Lip(hn−1(Ωp(r))|r=0 is finite where Lip(hn−1(Ωp(r))|r=0

= lims→0+ Lip(hn−1(Ωp(r))|{0<r<s}.

Example 3.6. (1) Consider a sector ΣF := {(x, y) ∈ R
2 : |y| < F (x)} where

F is convex, even, and nonnegative, and F (0) = 0. The metric space XF is ob-
tained by gluing B1(0)\ΣF along the graph of ±F . Then, XF is an Alexandrov
space. Every points of the graph of ±F in XF are singular. Consider the case
in which F (x) = 1 −

√
1− x2. Then Ω0(r) = (arcsin(r/2), π − arcsin(r/2)) ∪

(−π+arcsin(r/2),− arcsin(r/2)) and h1(Ω0)(r) = 2(π−2 arcsin(r/2)). Clearly,
h1(Ω0(r)) is Lipschitz continuous as r → 0+. Thus, the origin is regularly ex-
hausting. Likewise, all other singular points are also regularly exhausting.

(2) Consider the case F (x) = |x|γ , 1 < γ < 2. A point (x, F (x)), whose
distance to the origin is r, satisfies x2 + F (x)2 = x2(1 + x2γ−2) = r2. Thus, if
x is very small, then x ∼ r and F (x) ∼ F (r). Then Ω0(r) = (arcsin(rγ−1), π−
arcsin(rγ−1)) ∪ (−π + arcsin(rγ−1),− arcsin(rγ−1)), and h1(Ω0(r)) = 2(π −
arcsin(rγ−1)). In this case, h1(Ω0(r)) is not Lipschitz continuous as r → 0+.
The origin is not regularly exhausting.

Assuming the two conditions given in Definitions 3.2 and 3.5 to be satisfied,
one can obtain the following derivative comparison of spherical means:

Lemma 3.7. Suppose that an Alxandrov space X is α-volume regular (α ≥ 1)
and is regularly exhausting. Let f and g be Lipschitz continuous functions on

X. Suppose that f(p) = g(p) and f ≥ g on a neighborhood of p. Then there
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exists a sequence (rk) converging to 0 such that the spherical means f̄ , ḡ satisfy

f̄ ′(rk) ≥ ḡ′(rk).

Proof. Clearly f̄(0) = ḡ(0) and there exists a > 0 such that f̄(r) ≥ ḡ(r) for
r ∈ [0, a). It suffices from Lemma 3.1 to show that f̄ (likewise ḡ) is Lipschitz
continuous. From the α-volume regularity condition with α ≥ 1, there exist
0 < a′ < a and a Lipschitz continuous function E on Tp such that J(r, θ) =
rn−1(1 + E(rθ)rα) for 0 < r < a′. Then one has

f̄(r) =

∫
Ωp(r)

f̃θ(r)J(r, θ)dhn−1(θ)∫
Ωp(r)

J(r, θ)dhn−1(θ)

=
rn−1

∫
Ωp(r)

f̃θ(r)dhn−1(θ) + rn−1+α
∫
Ωp(r)

f̃θ(r)E(rθ)dhn−1(θ)

rn−1hn−1(Ωp(r)) + rn−1+α
∫
Ωp(r)

E(rθ)dhn−1(θ)

=

∫
Ωp(r)

f̃θ(r)dhn−1(θ) + rα
∫
Ωp(r)

f̃θ(r)E(rθ)dhn−1(θ)

hn−1(Ωp(r)) + rα
∫
Ωp(r)

E(rθ)dhn−1(θ)
.

Since X is regularly exhausting, hn−1(Ωp(r)) is Lipschitz continuous in r. For
r > s, one clearly has Ωr(p) ⊂ Ωs(p) and

hn−1(Ωs(p) \ Ωr(p)) = hn−1(Ωs)− hn−1(Ωr) ≤ C2|r − s|.

Thus, for 0 < s < r < a′∣∣∣∣
∫

Ωr

f̃θ(r)dhn−1(θ)−

∫

Ωs

f̃θ(s)dhn−1(θ)

∣∣∣∣

≤

∫

Ωr

|f̃θ(r)− f̃θ(s)|dhn−1(θ) +

∣∣∣∣∣

∫

Ωs\Ωr

f̃θ(s)dhn−1(θ)

∣∣∣∣∣
≤ C1|Σp||r − s|+ C2 sup

Ba(p)

|f ||r − s|

which implies that
∫
Ωr(p)

f̃θ(r)dhn−1(θ) is Lipschitz continuous.

Since E(rθ) is Lipschitz continuous in r,
∫
Ωp(r)

f̃θ(r)E(rθ)dhn−1(θ) and∫
Ωp(r)

E(rθ)dhn−1(θ) are likewise Lipschitz continuous. Thus, the denominator

and numerator of f̄ are Lipschitz continuous. Since hn−1(Ωp(r)) → hn−1(Σp)
as r → 0+, the denominator of f̄ is bounded below by positive constant as
r → 0+. It implies that f̄ are Lipschitz continuous near 0. �

We now give the key technical ingredient for the main theorem.

Proposition 3.8. Let X be an Alexandrov space satisfying the assumptions of

Lemma 3.7. Additionally assume that X has no Perelman singular points. If

f and g are DC1-functions such that f(p) = g(p) and f ≥ g on Ba(p), then
there exists a sequence of positive numbers (Ri) converging to 0 such that

∫

BRi
(p)

∆DCf ≥

∫

BRi
(p)

∆DCg + τp(Ri)R
n
i ,
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where a function τp(r) satisfies

|τp(r)| ≤ 16(Lip(f)(p) + Lip(g)(p))Lip(hn−1(Ωp(r))|r=0 +O(rα)

as r → 0+.

Proof. Since rp(x) = |px| is a DC1-function in x, rp ◦ ϕ
−1 is a DC1-function

on a open subset ϕ(U) of Rn for local DC1-chart (ϕ,U) around p such that
Ba(p) ⊂ U (one can take smaller a if it is needed). Since the level set {rp◦ϕ

−1 =
r} has no critical point, as a consequence of Proposition 2.13 of [15], it is a
DC1-hypersurface in R

n. Thus Sr(p) is a DC1-hypersurface in X . Applying
the Gauss-Green formula (Proposition 2.8) one has

∫

Br(p)

∆DC(f − g) =

∫

Sr(p)

〈∇(f − g), ν〉dhn−1(3.6)

=

∫

Ωp(r)

(
∂f̃θ
∂r

−
∂g̃θ
∂r

)
J(r, θ)dhn−1(θ),

where ν is the outward normal vector on Sr(p). Since

d

dr

∫

Ωp(r)

f̃θ(r)J(r, θ)dhn−1(θ)

=

∫

Ωp(r)

∂

∂r
(f̃θ(r)J(r, θ))dhn−1(θ)

− lim
h→0+

1

h

∫

Ωp(r−h)\Ωp(r)

f̃θ(r − h)J(r − h, θ)dhn−1(θ)

for f (likewise g) one has for a.e. r,

∫

Ωp(r)

∂f̃θ
∂r

J(r, θ)dhn−1(θ)

= f̄ ′(r)Ar + f̄(r)A′

r −

∫

Ωp(r)

f̃θ
∂J

∂r
dhn−1(θ)

+ lim
h→0+

1

h

∫

Ωp(r−h)\Ωp(r)

f̃θ(r − h)J(r − h, θ)dhn−1(θ).

Thus, from (3.6),
∫

Br(p)

∆DCf −

∫

Br(p)

∆DCg

= (f̄ ′(r) − ḡ′(r))Ar +

∫

Ωp(r)

(f̃θ − g̃θ)J

(
A′

r

Ar
−

∂J/∂r

J

)
dhn−1(θ)

+ lim
h→0+

1

h

∫

Ωp(r−h)\Ωp(r)

(f̃θ(r − h)− g̃θ(r − h))J(r − h, θ)dhn−1(θ).
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By Lemma 3.7, there exists a sequence Ri → 0 such that
∫

BRi
(p)

∆DCf −

∫

BRi
(p)

∆DCg(3.7)

≥

∫

Ωp(r)

(f̃θ − g̃θ)J

(
A′

r

Ar
−

∂J/∂r

J

)
dhn−1|r=Ri

+ lim
h→0+

1

h

∫

Ωp(r−h)\Ωp(r)

(f̃θ − g̃θ)(r − h)J(r − h, θ)dhn−1|r=Ri
.

Now, our aim is to estimate the right hand side of the inequality (3.7). First
notice that

A′

r =

∫

Ωp(r)

∂J

∂r
(r, θ)dhn−1(θ) − lim

h→0+

1

h

∫

Ωp(r−h)\Ωp(r)

J(r − h, θ)dhn−1(θ).

On the other hand, one has

1

J

∂J

∂r
=

(n− 1)rn−2 + (n− 1 + α)rn−2+αE + rn−1+α ∂E
∂r

rn−1 + rn−1+αE

for almost everywhere in r and θ, and
∫
Ωp(r)

∂J
∂r∫

Ωp(r)
J

=
(n− 1)rn−2hn−1(Ωp(r)) + (n− 1 + α)rn−2+α

∫
Ωp(r)

E + rn−1+α
∫
Ωp(r)

∂E
∂r

rn−1hn−1(Ωp(r)) + rn−1+α
∫
Ωp(r)

E

for almost everywhere in r. Thus, using Lipschitz continuity of E in r, we see
∫
Ωp(r)

∂J
∂r∫

Ωp(r)
J

−
∂J
∂r

J

= αrα−1

(
1

hn−1(Ωp(r))

∫

Ωp(r)

E(rθ)dhn−1(θ)− E(rθ)

)
+O(rα)

= O(rα)

as r → 0+. Since f − g is Lipschitz continuous and f(p) = g(p), one has

|f̃θ − g̃θ| ≤ Cr for rθ ∈ ∪0<r<a{r} × Ωp(r) as r → 0+. Furthermore, by the

condition on J , one has (f̃θ − g̃θ)J = O(rn). It implies that

∫

Ωp(r)

(f̃θ − g̃θ)J

(∫
Ωp(r)

∂J
∂r

Ar
−

∂J
∂r

J

)
dhn−1 = O(rn+α).

So, for the estimate of the righthand side of (3.7), it remains to control

−

(
limh→0+

1
h

∫
Ωp(r−h)\Ωp(r)

J(r − h, θ)dhn−1∫
Ωp(r)

Jdhn−1

)∫

Ωp(r)

(f̃θ − g̃θ)(r)Jdhn−1

(3.8)
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+ lim
h→0+

1

h

∫

Ωp(r−h)\Ωp(r)

(f̃θ − g̃θ)(r − h)J(r − h, θ)dhn−1(θ).

Here, from (3.5) we see

limh→0+
1
h

∫
Ωp(r−h)\Ωp(r)

J(r − h, θ)dhn−1(θ)∫
Ωp(r)

Jdhn−1

=

∂
∂r

∫
Ωp(r)

Jdhn−1 −
∫
Ωp(r)

∂J
∂r

dhn−1∫
Ωp(r)

Jdhn−1

=
∂
∂r
hn−1(Ωp(r))

hn−1(Ωp(r))
+O(rα).

Thus, the absolute value of (3.8) is bounded by

4 sup
x∈Bp(r)

|f(x)− g(x)|

|x− p|

∣∣∣∣
∂

∂r
hn−1(Ωp(r))

∣∣∣∣ r
n +O(rn+α)

≤ 16(Lip(f)(p) + Lip(g)(p))Lip(hn−1(Ωp(r))|r=0 r
n +O(rn+α)

as r → 0+. It completes the proof. �

Now we give a proof of the main theorem.

Proof of Theorem 1.2. Let x0 be a point in X satisfying the technical assump-
tion for main theorem. Denote the distance function from x0 by r0. Take a
positive number b such that Bb(x0) includes the compact set K in the technical
assumption for main theorem. Define a function

r̃0(x) =

{
b if r0(x) < b

r0(x) if r0(x) ≥ b.

Consider 1
m
r̃0 − u. Then there exists pm ∈ X such that 1

m
r̃0 − u has a local

minimum at pm. Take BRm
(pm) where 1

m
r̃0 ≥ u. Set um = u + 1

m
r̃0(pm) −

u(pm).
First, one can show that limm→∞ u(pm) = supX u as follows. Let ǫ > 0.

Then there exists pǫ such that u(pǫ) > supX u − ǫ/2. Choose m sufficiently
large such that 2r̃0(pǫ) < mǫ. Then

u(pm) ≥ u(pm)−
1

m
r̃0(pm) ≥ u(pǫ)−

1

m
r̃0(pǫ) ≥ sup

X

u− ǫ.

Next, we apply Proposition 3.8 to 1
m
r̃0 and um on BRm

(pm). Then, there
exists a sequence Rm,i(< Rm) which goes to 0 as i → ∞ such that

1

m

∫

BRm,i
(pm)

∆DC r̃0 ≥

∫

BRm,i
(pm)

∆DCu+ τpm
(Rm,i)R

n
m,i.
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Since u does not attain its supremum in X , r0(pm) → +∞ as m → +∞. Thus
for given ǫ > 0, there exists m such that (1/m+ Lip(u)(pm)) < ǫ. Once m is
chosen, take Rm,i < Rm such that

|τpm
(Rm,i)| ≤ 16Lip(hn−1(Ωpm

(r))|r=0(1/m+ Lip(u)(pm))

≤ 16Cǫ,

where C = supp∈X Lip(hn−1(Ωp(r))|r=0 < +∞ by regular exhausting condi-
tion. Since r0(pm) ≥ b for large m, Theorem 2.10 implies that

∫

BRm,i
(pm)

∆DCr0 ≤ (n− 1) sup
x∈BRm,i

(pm)

s′κ(r0(x))

sκ(r0(x))
hn(BRm,i

(pm))

≤ (n− 1)Cκ hn(BRm,i
(pm)),

where

Cκ =

{
1/b if κ = 0√
|κ| coth(

√
|κ|b) if κ < 0

(since X is noncompact, the case κ > 0 is excluded). Then one has

1

hn(BRm,i(pm))

∫

BRm,i(pm)

∆DCu ≤ ǫ

(
(n− 1)Cκ + 32C

Rn
m,i

V n
κ (Rm,i)

)
,

where V n
κ (R) is the volume of geodesic ball of radius R in the n-dimensional

space form of curvature κ and Rn
m,i/V

n
κ (Rm,i) are bounded by uniform constant

as Rm,i → 0+. �

Proof of Theorem 1.5. Given ǫ > 0, there exist pǫ ∈ X and Rǫ > 0 such that
∫

BRǫ(pǫ)

F (u)dhn =

∫

BRǫ (pǫ)

∆DCu < ǫhn(BRǫ
(pǫ)).

Since u is continuous, the condition u(pǫ) > supX u − ǫ can be replaced with
the condition infx∈BRǫ(pǫ) u(x) ≥ supX u− ǫ by taking small Rǫ. Then,

hn(BRǫ
(pǫ))F (sup

X

u− ǫ) ≤

∫

BRǫ(pǫ)

F (u)dhn

which implies

F (sup
X

u− ǫ) ≤ ǫ,

equivalently

sup
X

u ≤ ǫ + F−1(ǫ).

It implies that u ≡ 0. �
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