Commun. Korean Math. Soc. **31** (2016), No. 2, pp. 389–394 http://dx.doi.org/10.4134/CKMS.2016.31.2.389

THE LOCAL STAR CONDITION FOR GENERIC TRANSITIVE DIFFEOMORPHISMS

MANSEOB LEE

ABSTRACT. Let $f: M \to M$ be a diffeomorphism on a closed $C^{\infty} d(\geq 2)$ dimensional manifold M. For C^1 -generic f, if a diffeomorphism f satisfies the local star condition on a transitive set, then it is hyperbolic.

1. Introduction

Let M be a closed C^{∞} $d(\geq 2)$ dimensional manifold, and let Diff(M) be the space of diffeomorphisms of M endowed with the C^1 -topology. Denote by d the distance on M induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle TM. Let $f \in \text{Diff}(M)$ and let Λ be a closed f-invariant set. We say that Λ is hyperbolic for f if the tangent bundle $T_{\Lambda}M$ has a Df-invariant splitting $E^s \oplus E^u$ and there exist constants C > 0 and $0 < \lambda < 1$ such that

$$||D_x f^n|_{E_x^s}|| \leq C\lambda^n$$
 and $||D_x f^{-n}|_{E_x^u}|| \leq C\lambda^n$

for all $x \in \Lambda$ and $n \geq 0$. Denote by P(f) the set of all periodic points of f. We say that f satisfies Axiom A if the non-wandering set $\Omega(f)$ is hyperbolic and it is the closure of P(f). A diffeomorphism f is Ω -stable if there is a C^1 neighborhood $\mathcal{U}(f)$ of f such that for any $g \in \mathcal{U}(f)$ there is a homeomorphism $h: \Omega(f) \to \Omega(g)$ such that $h \circ f = g \circ h$, where $\Omega(g)$ is the non-wandering set of g. For $f \in \text{Diff}(M)$, we say that f satisfies the star diffeomorphism (or f satisfies the star condition) if there is a C^1 -neighborhood \mathcal{U} of f such that all periodic points of $g \in \mathcal{U}$ are hyperbolic. Denote by $\mathcal{F}(M)$ the set of all star diffeomorphisms. Mañé suggested in [5] the problem: Does $f \in \mathcal{F}(M)$ imply that f satisfies Axiom A? And he proved that if $f \in \mathcal{F}(M)$ and the nonwandering set $\Omega(f)$ is locally maximal, then f is Axiom A, when dimM = 2. Later, for the any dimension case, by Aoki [2] and Hayashi [3], we know that if $f \in \mathcal{F}(M)$, then f satisfies both Axiom A and no-cycle condition, that is, Ω -stable. For that, in this article, we consider the local star condition which is a local version of $\mathcal{F}(M)$.

O2016Korean Mathematical Society

Received March 18, 2015.

²⁰¹⁰ Mathematics Subject Classification. 37D20, 37C75.

 $Key\ words\ and\ phrases.$ transitive set, star diffeomorphisms, local star diffeomorphisms, hyperbolic.

We say that Λ is *locally maximal* if there is a neighborhood U of Λ such that $\Lambda = \bigcap_{n \in \mathbb{Z}} f^n(U)$. Here U is called a locally maximal neighborhood of Λ . Let Λ be a closed f-invariant set. We say that f satisfies the *local star condition* on Λ (or, $f|_{\Lambda}$ satisfies the *local star condition*) if there are a C^1 -neighborhood $\mathcal{U}(f)$ of f and a neighborhood U of Λ such that for any $g \in \mathcal{U}(f)$, every $p \in P(g) \cap \Lambda_g(U)$ is hyperbolic, where $\Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$, and U is a locally maximal neighborhood of Λ . For the local star diffeomorphism, we consider the problem: For a closed f-invariant set Λ , if $f \in \mathcal{F}(\Lambda)$, then is it hyperbolic?

In this paper, we give a partial answer of the problem. Actually, we consider the transitive set of the local star diffeomorphism for the generic view point.

We say that a subset $\mathcal{G} \subset \text{Diff}(M)$ is residual if \mathcal{G} contains the intersection of a countable family of open and dense subsets of Diff(M); in this case \mathcal{G} is dense in Diff(M). A property "P" is said to be (C^1) -generic if "P" holds for all diffeomorphisms which belong to some residual subset of Diff(M). Then we have the following.

Theorem 1.1. There is a residual set $\mathcal{G} \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}$, if a diffeomorphism f satisfies the local star condition on a transitive set Λ , then it is hyperbolic.

2. Proof of Theorem 1.1

Denote by Orb(p) the periodic *f*-orbit of $p \in P(f)$. Let $p \in P(f)$ be a hyperbolic periodic point with period $\pi(p) > 0$. It is well known that if *p* is a hyperbolic periodic point of *f* with period *k*, then the sets

$$W^{s}(p) = \{x \in M : f^{k\pi(p)}(x) \to p \text{ as } n \to \infty\} \text{ and}$$
$$W^{u}(p) = \{x \in M : f^{-k\pi(p)}(x) \to p \text{ as } n \to \infty\}$$

are C^1 -injectively immersed submanifolds of M. A point $x \in W^s(p) \cap W^u(p)$ is called a *transversal homoclinic point* of f if the intersection is transversal at x; i.e., $x \in W^s(p) \pitchfork W^u(p)$. The closure of the set of transversal homoclinic points of f associated to p is called the *transversal homoclinic class* of f associated to p, and it is denoted by $H_f(p) = \overline{W^s(p) \cap W^u(p)}$. It is clear that $H_f(p)$ is compact, invariant and transitive. The following lemma was founded in [1].

Lemma 2.1 ([1, Theorem 4.10]). There is a residual set \mathcal{G}_0 such that for any $f \in \mathcal{G}_0$, if the set Λ is locally maximal and transitive, then $\Lambda = H_f(p)$ for some hyperbolic periodic point p.

For any two periodic points $p, q \in P(f) \cap \Lambda(=P(f|_{\Lambda}))$, we say that p, q have the *barycenter property* if for any $\epsilon > 0$ there exists an integer $N = N(\epsilon, p, q) > 0$ such that for any two integers n_1, n_2 there is a point $x \in \Lambda$ such that

$$d(f^{i}(x), f^{i}(p)) < \epsilon, \ -n_{1} \le i \le 0, \ \text{and} \ \ d(f^{i+N}(x), f^{i}(q)) < \epsilon, \ \ 0 \le i \le n_{2}.$$

390

A satisfies the *barycenter property* if the barycenter property holds for any two periodic points $p, q \in P(f|_{\Lambda})$. The notion of the barycenter property was introduced by [1].

Lemma 2.2. There is a residual set \mathcal{G}_1 such that for any $f \in \mathcal{G}_1$, if the set Λ is locally maximal and transitive, then Λ satisfies the barycenter property.

Proof. Let $f \in \mathcal{G}_1 = \mathcal{G}_0$ and let the set Λ be locally maximal and transitive. By Lemma 2.1, Λ is the homoclinic class $H_f(p)$, for some hyperbolic periodic point p. Then by [1, Proposition 4.8], Λ satisfies the barycenter property. \Box

Lemma 2.3. Let Λ be a transitive with locally maximal. If Λ satisfies the barycenter property, then for any $p, q \in P(f) \cap \Lambda$,

 $W^{s}(p) \cap W^{u}(q) \neq \emptyset$ and $W^{u}(p) \cap W^{s}(q) \neq \emptyset$.

Proof. Since Λ is transitive, by Pugh's closing lemma, there exist the sequences $Orb_{g_n}(p_n)$ such that $Orb_{g_n}(p_n) \to \Lambda$ and $g_n \to f$ as $n \to \infty$. Since Λ is locally maximal, for sufficiently large n there is a periodic point p such that $p \in \Lambda$. Thus we can consider the periodic points which belong to Λ . Since Λ satisfies the barycenter property by [9, Lemma 2.2], $W^s(p) \cap W^u(q) \neq \emptyset$. Other case is similar. \Box

We say that f is Kupka-Smale if every periodic points are hyperbolic, and if for any $p, q \in P(f)$, the stable manifold $W^s(p)$ and the unstable manifold $W^u(q)$ intersect transversally. Denote by \mathcal{KS} the set of all Kupka-Smale diffeomorphisms. It is well-known that \mathcal{KS} is a residual set of Diff(M). The dimension of the stable manifold $W^s(p)$ is called *index of* p, and we denote it by index(p).

Lemma 2.4. There is a residual set $\mathcal{G}_2 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_2$ if a transitive set Λ is locally maximal, then for any $p, q \in P(f) \cap \Lambda$,

$$index(p) = index(q).$$

Proof. Let $f \in \mathcal{G}_2 = \mathcal{G}_1 \cap \mathcal{KS}$. Since the set Λ is transitive and locally maximal, by Lemma 2.2, one can see that Λ satisfies the barycenter property. Since f is Kupka-Smale, for any hyperbolic periodic points $p, q \in \Lambda$ we know that either $W^s(p) \cap W^u(q) = \emptyset$ or $W^s(p) \pitchfork W^u(q) \neq \emptyset$. Since Λ satisfies the barycenter property, by Lemma 2.3, for any periodic points $p, q \in \Lambda$ we have $W^s(p) \cap$ $W^u(q) \neq \emptyset$. Therefore, we can see that $W^s(p) \pitchfork W^u(q) \neq \emptyset$. Thus index(p) =index(q). \Box

Lemma 2.5. There is a residual set $\mathcal{G}_3 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_3$, a locally maximal transitive set Λ is the closure of the set $P(f) \cap \Lambda$.

Proof. Let $f \in \mathcal{G}_3$. Since Λ is transitive, by Pugh's closing lemma, there is a periodic orbit sequence $Orb(p_n)$ of f such that $Orb(p_n)$ converges to Λ . Since Λ is locally maximal, we have $\Lambda = \overline{P(f) \cap \Lambda}$.

Denote by $\mathcal{F}(\Lambda)$ the set of all local star diffeomorphisms. We say that Λ admits a *dominated splitting* if the tangent bundle $T_{\Lambda}M$ has a continuous Df-invariant splitting $E \oplus F$ and there exist constants C > 0 and $0 < \lambda < 1$ such that

$$||D_x f^n|_{E(x)}|| \cdot ||D_x f^{-n}|_{F(f^n(x))}|| \le C\lambda^n$$

for all $x \in \Lambda$ and $n \geq 0$.

Proposition 2.6. There is a residual set $\mathcal{G}_4 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_4$, if $f \in \mathcal{F}(\Lambda)$, then there exist a C^1 -neighborhood $\mathcal{U}(f)$ of f, constants $C > 0, 0 < \lambda < 1$ and $m \in \mathbb{Z}^+$ such that

(a) for each $g \in \mathcal{U}(f)$, if q is a periodic point of g in $\Lambda_g(U)$ with period $\pi(q,g) \ge m$, then

$$\prod_{i=0}^{k-1} ||Dg^{m}|_{E^{s}(g^{im}(q))}|| < C\lambda^{k} \quad and \quad \prod_{i=0}^{k-1} ||Dg^{-m}|_{E^{u}(g^{-im}(q))}|| < C\lambda^{k},$$

where $k = [\pi(q, g)/m].$

(b) Λ admits a dominated splitting $T_{\Lambda}M = E \oplus F$ with dimE = index(p).

Proof. Let $f \in \mathcal{G}_4 = \mathcal{G}_2 \cap \mathcal{G}_3$ and let $\mathcal{U}(f)$ be a neighborhood of f. We may assume that $f \in \mathcal{F}(\Lambda)$. Then by Mañé's result, we have the family of periodic sequences of linear isomorphisms of $\mathbb{R}^{\dim M}$ generated by $Dg(g \in \mathcal{U}_0(f) \subset \mathcal{U}(f))$ along the hyperbolic periodic points $q \in P(g) \cap \Lambda_g(U) (= \bigcap_{n \in \mathbb{Z}} g^n(U))$ is uniformly hyperbolic. Since $f \in \mathcal{G}_4$, by Lemma 2.4 and Lemma 2.5, we have (a) and (b) (see [6]).

Then following was proved by Mañé [7, Lemma I.5].

Lemma 2.7. Let Λ be a closed invariant set of f and $E \subset T_{\Lambda}M$ be a continuous invariant subbundle. If there is m > 0 such that

$$\int \log \|Df^m|_E \|d\mu < 0$$

for every ergodic $\mu \in \mathcal{M}_{f^m}(\Lambda)$, then E is contracting.

Let us recall Mañé's ergodic closing lemma in [6]. For any $\epsilon > 0$, let $B_{\epsilon}(f, x)$ be an ϵ -tubular neighborhood of f-orbit of x, that is,

$$B_{\epsilon}(f,x) = \{ y \in M : d(f^n(x), y) < \epsilon \text{ for any } n \in \mathbb{Z} \}$$

We say that a point $x \in M$ is well closable for $f \in \text{Diff}(M)$, if for any $\epsilon > 0$ there is $g \in \text{Diff}(M)$ with $d_1(f,g) < \epsilon$ such that $d(f^n(x), g^n(p)) < \epsilon$ for any $0 \le n \le \pi(p)$, where d_1 is the C^1 -metric. Let Σ_f denote the set of well closable points of f. In [6], Mañé showed that for any f-invariant Borel probability measure μ on M, $\mu(\Sigma_f) = 1$. Let \mathcal{M} be the space of all Borel measures μ on Mwith the weak^{*} topology. Then we know that for any ergodic measure $\mu \in \mathcal{M}$

392

of f, μ is supported on a periodic orbit $Orb(p) = \{p, f(p), \dots, f^{\pi(p)-1}(p)\}$ if and only if

$$\mu = \frac{1}{\pi(p)} \sum_{i=0}^{\pi(p)-1} \delta_{f^i(p)},$$

where δ_x is the atomic measure respecting x. The following lemma is proved by Lee and Wen [4].

Lemma 2.8 ([4, Lemma 2.3]). There is a residual set $\mathcal{G}_5 \subset \text{Diff}(M)$ such that every $f \in \mathcal{G}_5$ satisfies the following property: Any ergodic invariant measure μ of f is the limit of sequence of ergodic invariant measures supported by periodic orbits $Orb(p_n)$ of f in the weak* topology. Moreover, the orbits $Orb(p_n)$ converge to the support of μ in the Hausdorff topology.

Proof of Theorem 1.1. Let $f \in \mathcal{G}_3 \cap \mathcal{G}_4 \cap \mathcal{G}_5$, and let Λ be locally maximal in U. Then by Proposition 2.6(b), Λ admits a dominated splitting $T_{\Lambda}M = E \oplus F$ such that $E(p) = E^s(p)$ and $F(p) = E^u(p)$ for every $p \in P(f) \cap \Lambda$. Let μ be an ergodic measure with $supp(\mu) \subset \Lambda$. Since $f \in \mathcal{G}_5$, there is a sequence of periodic orbits $Orb(p_n)$ such that $Orb(p_n)$ converges to Λ . We write $Orb(p_n) = P_n$. Then we know

$$\int \log \|Df^m|_E \|d\mu_{P_n} < 0.$$

Thus

$$\lim_{n \to \infty} \int \log \|Df^m|_E \|d\mu_{P_n} = \int \log \|Df^m|_E \|d\mu < 0$$

Since Λ is locally maximal $P_n \in \Lambda$. Thus by Lemma 2.7, E is contracting. With the same argumentation, F is expanding.

Acknowledgments. This work is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No-2014R1A1A1A05002124).

References

- F. Abdenur, C. Bonatti, and S. Crovisier, Nonuniform hyperbolicity for C¹-generic diffeomorphisms, Israel J. Math. 183 (2011), 1–60.
- [2] N. Aoki, The set of Axiom A diffeomorphisms with no cycles, Bol. Soc. Brasil. Mat. (N.S.) 23 (1992), no. 1-2, 21–65.
- [3] S. Hayashi, Diffeomorphisms in F¹(M) satisfy Axiom A, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 233–253.
- K. Lee and X. Wen, Shadowable chain transitive sets of C¹-generic diffeomorphisms, Bull. Korean Math. Soc. 49 (2012), no. 2, 263–270.
- [5] R. Mañé, Contributions to the stability conjecture, Topology 17 (1978), no. 4, 383–396.
- [6] _____, An ergodic closing lemma, Ann of Math. 116 (1982), no. 3, 503-540.
- [7] $\underline{\qquad}$, A proof of the C^1 stability conjecture, Inst. Hautes Études Sci. Publ. Math. No. 66 (1988), 161–210.
- [8] C. Robinson, Structural stability of C¹-diffeomorphisms, J. Differential Equations 22 (1976), no. 1, 28–73.

MANSEOB LEE

 W. Sun and X. Tian, Diffeomorphisms with various C¹-stalbe properties, Acta Math. Sci. Ser. B Engl. Ed. **32** (2012), no. 2, 552–558.

Department of Mathematics Mokwon University Daejeon 302-729, Korea *E-mail address*: lmsds@mokwon.ac.kr

394