Commun. Korean Math. Soc. **31** (2016), No. 2, pp. 365–377 http://dx.doi.org/10.4134/CKMS.2016.31.2.365

STATICAL HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD OF A QUASI-CONSTANT CURVATURE

Dae Ho Jin

ABSTRACT. In this paper, we study half lightlike submanifolds M of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature such that the characteristic vector field ζ of \overline{M} is tangent to M. First, we provide a new result for such a half lightlike submanifold. Next, we investigate a statical half lightlike submanifold M of \overline{M} subject such that (1) the screen distribution S(TM) is totally umbilical or (2) M is screen conformal.

1. Introduction

In the theory of Riemannian geometry, Chen-Yano [2] introduced the notion of a Riemannian manifold of a quasi-constant curvature as a Riemannian manifold (\bar{M}, \bar{g}) equipped with a curvature tensor \bar{R} of the following form:

(1.1)
$$\bar{R}(X,Y)Z = f_1\{\bar{g}(Y,Z)X - \bar{g}(X,Z)Y\} + f_2\{\theta(Y)\theta(Z)X - \theta(X)\theta(Z)Y + \bar{g}(Y,Z)\theta(X)\zeta - \bar{g}(X,Z)\theta(Y)\zeta\}$$

for any vector fields X, Y and Z on \overline{M} , where f_1 and f_2 are smooth functions, ζ is a unit vector field which is called the *characteristic vector field* of \overline{M} , and θ is a 1-form associated with ζ by $\theta(X) = \overline{g}(X, \zeta)$. It is well known that if $f_2 = 0$, then \overline{M} is reduced to a space of constant curvature.

The theory of lightlike submanifolds is an important topic of research in differential geometry due to its application in mathematical physics. Half lightlike submanifold M is a lightlike submanifold of codimension 2 such that $rank\{Rad(TM)\} = 1$, where $Rad(TM) = TM \cap TM^{\perp}$ is the radical distribution of M. It is a special case of general r-lightlike submanifold [4] such that r = 1. Its geometry is more general than that of lightlike hypersurface or coisotropic submanifold which is lightlike submanifolds M of codimension

O2016Korean Mathematical Society

Received April 8, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.

 $Key\ words\ and\ phrases.$ statical, quasi-constant curvature, totally umbilical screen, screen conformal.

2 such that $rank\{Rad(TM)\} = 2$. Much of its theory will be immediately generalized in a formal way to arbitrary *r*-lightlike submanifolds.

In this paper, we study half lightlike submanifolds M of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature such that the characteristic vector field ζ of \overline{M} is tangent to M. First, we provide a new result for such a half lightlike submanifold. Next, we investigate a statical half lightlike submanifold M of such an indefinite Kaehler manifold \overline{M} subject such that (1) the screen distribution S(TM) is totally umbilical or (2) M is screen conformal.

2. Preliminaries

Let (M, g) be a half lightlike submanifold of a semi-Riemannian manifold $(\overline{M}, \overline{g})$ with the tangent bundle TM, the normal bundle TM^{\perp} , the radical distribution $Rad(TM) = TM \cap TM^{\perp}$, a screen distribution S(TM), and a coscreen distribution $S(TM^{\perp})$ such that

$$TM = Rad(TM) \oplus_{orth} S(TM), \qquad TM^{\perp} = Rad(TM) \oplus_{orth} S(TM^{\perp}),$$

where \oplus_{orth} denotes the orthogonal direct sum. We follow Duggal-Jin [5] for notations and structure equations used in this article. Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of a vector bundle E. Also denote by $(2.6)_1$ the first equation of the two equations in (2.6). We use same notations for any others. Choose $L \in \Gamma(S(TM^{\perp}))$ as a unit spacelike vector field, *i.e.*, $\bar{g}(L,L) = 1$, without loss of generality. Consider the orthogonal complementary distribution $S(TM)^{\perp}$ to S(TM) in $T\bar{M}$, of rank 3. Certainly the vector fields ξ and L belong to $\Gamma(S(TM)^{\perp})$. Hence we have the following orthogonal decomposition

$$S(TM)^{\perp} = S(TM^{\perp}) \oplus_{orth} S(TM^{\perp})^{\perp},$$

where $S(TM^{\perp})^{\perp}$ is the orthogonal complementary to $S(TM^{\perp})$ in $S(TM)^{\perp}$, of rank 2. It is known [5] that, for any null section ξ of Rad(TM), there exists a uniquely defined null vector field N in $S(TM^{\perp})^{\perp}$ satisfying

$$\bar{g}(\xi, N) = 1, \ \bar{g}(N, N) = \bar{g}(N, X) = \bar{g}(N, L) = 0, \ \forall X \in \Gamma(S(TM)).$$

Denote by ltr(TM) the subbundle of $S(TM^{\perp})^{\perp}$ locally spanned by N. We see that $S(TM^{\perp})^{\perp} = Rad(TM) \oplus ltr(TM)$. Let $tr(TM) = S(TM^{\perp}) \oplus_{orth} ltr(TM)$. We call N, ltr(TM) and tr(TM) the lightlike transversal vector field, lightlike transversal vector bundle and transversal vector bundle of M with respect to the screen distribution S(TM) respectively.

Let $\overline{\nabla}$ be the Levi-Civita connection of \overline{M} and P the projection morphism of TM on S(TM). Then the local Gauss-Weingarten formulas of M and S(TM) are given respectively by

(2.1)
$$\bar{\nabla}_X Y = \nabla_X Y + B(X, Y)N + D(X, Y)L,$$

(2.2)
$$\overline{\nabla}_X N = -A_N X + \tau(X)N + \rho(X)L,$$

(2.3) $\bar{\nabla}_X L = -A_L X + \phi(X)N;$

(2.4)
$$\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,$$

(2.5)
$$\nabla_X \xi = -A_{\xi}^* X - \tau(X)\xi,$$

where ∇ and ∇^* are the induced connections on TM and S(TM) respectively, B and D are called the *local second fundamental forms* of M, C is called the *local screen second fundamental form* on S(TM), A_N , A_{ξ}^* and A_L are called the *shape operators*, and τ , ρ and ϕ are 1-forms on TM.

From now and in the sequel, let X, Y, Z and W be the vector fields on M, unless otherwise specified. Since $\overline{\nabla}$ is torsion-free, ∇ is also torsion-free and the second fundamental forms B and D are symmetric. The above local second fundamental forms are related to their shape operators by

(2.6) $B(X,Y) = g(A_{\xi}^*X,Y), \qquad \bar{g}(A_{\xi}^*X,N) = 0,$

(2.7)
$$C(X, PY) = g(A_N X, PY), \qquad \bar{g}(A_N X, N) = 0,$$

 $(2.8) \qquad D(X,Y)=g(A_{\scriptscriptstyle L}X,Y)-\phi(X)\eta(Y), \qquad \quad \bar{g}(A_{\scriptscriptstyle L}X,N)=\rho(X),$

where η is a 1-form given by $\eta(X) = \bar{g}(X, N)$. From $(2.6)_1$ and $(2.8)_1$, we get

(2.9)
$$B(X,\xi) = 0, \quad D(X,\xi) = -\phi(X)$$

 A^*_{ξ} and $A_{_N}$ are S(TM)-valued, and A^*_{ξ} is self-adjoint on TM such that

The induced connection ∇ of M is not metric and satisfies

(2.11)
$$(\nabla_X g)(Y, Z) = B(X, Y) \eta(Z) + B(X, Z) \eta(Y).$$

But the induced connection ∇^* on S(TM) is a metric connection.

Definition. A half lightlike submanifold M of a semi-Riemannian manifold $(\overline{M}, \overline{g})$ is said to be *statical* [11, 12] if $\overline{\nabla}_X L \in \Gamma(S(TM))$ for any $X \in \Gamma(TM)$.

From (2.3) and (2.8)₂, we show that the above definition is equivalent to the conditions: $\phi = 0$ and $\rho = 0$. The condition $\phi = 0$ is equivalent to the conception: M is *irrotational*, *i.e.*, $\bar{\nabla}_X \xi \in \Gamma(TM)$ [14]. The condition $\rho = 0$ is equivalent to the conception: M is *solenoidal*, *i.e.*, $A_L X \in \Gamma(S(TM))$ [13].

We need the following Gauss-Codazzi equations (for a full set of these equations see [5]). Denote by \overline{R} , R and R^* the curvature tensors of $\overline{\nabla}$, ∇ and ∇^* respectively. Using the local Gauss-Weingarten formulas, we have

$$\begin{split} (2.12) \qquad \bar{R}(X,Y)Z &= R(X,Y)Z + B(X,Z)A_{N}Y - B(Y,Z)A_{N}X \\ &+ D(X,Z)A_{L}Y - D(Y,Z)A_{L}X \\ &+ \{(\nabla_{X}B)(Y,Z) - (\nabla_{Y}B)(X,Z) \\ &+ \tau(X)B(Y,Z) - \tau(Y)B(X,Z) \\ &+ \phi(X)D(Y,Z) - \phi(Y)D(X,Z)\}N \\ &+ \{(\nabla_{X}D)(Y,Z) - (\nabla_{Y}D)(X,Z) + \rho(X)B(Y,Z) \\ &- \rho(Y)B(X,Z)\}L, \end{split}$$

DAE HO JIN

$$\begin{split} (2.13) \quad \bar{R}(X,Y)N &= -\nabla_X(A_NY) + \nabla_Y(A_NX) + A_N[X,Y] \\ &+ \tau(X)A_NY - \tau(Y)A_NX + \rho(X)A_LY - \rho(Y)A_LX \\ &+ \{B(Y,A_NX) - B(X,A_NY) + 2d\tau(X,Y) \\ &+ \phi(X)\rho(Y) - \phi(Y)\rho(X)\}N \\ &+ \{D(Y,A_NX) - D(X,A_NY) + 2d\rho(X,Y) \\ &+ \rho(X)\tau(Y) - \rho(Y)\tau(X)\}L, \end{split}$$

(2.14)
$$R(X,Y)PZ = R^*(X,Y)PZ + C(X,PZ)A_{\xi}^*Y - C(Y,PZ)A_{\xi}X + \{(\nabla_X C)(Y,PZ) - (\nabla_Y C)(X,PZ) - \tau(X)C(Y,PZ) + \tau(Y)C(X,PZ)\}\xi,$$

(2.15)
$$R(X,Y)\xi = -\nabla_X^*(A_{\xi}^*Y) + \nabla_Y^*(A_{\xi}^*X) + A_{\xi}^*[X,Y] - \tau(X)A_{\xi}^*Y + \tau(Y)A_{\xi}^*X + \{C(Y,A_{\xi}^*X) - C(X,A_{\xi}^*Y) - 2d\tau(X,Y)\}\xi.$$

In the case R = 0, we say that M is *flat*. We set dim $\overline{M} = n + 3$. The *Ricci tensor* \overline{Ric} of \overline{M} is defined by

$$\bar{Ric}(X,Y) = trace\{Z \to \bar{R}(X,Z)Y\}, \quad \forall X, Y, Z \in \Gamma(T\bar{M}).$$

Denote by $R^{(0,2)}$ the induced tensor of type (0,2) on M such that

(2.16)
$$R^{(0,2)}(X,Y) = trace\{Z \to R(X,Z)Y\}, \quad \forall X, Y, Z \in \Gamma(TM).$$

Due to [6], using $(2.6)\sim(2.8)$ and the Gauss equation (2.12), we get

$$(2.17) R^{(0,2)}(X,Y) = \bar{Ric}(X,Y) + B(X,Y)tr A_N + D(X,Y)tr A_L - g(A_NX, A_{\xi}^*Y) - g(A_LX, A_LY) + \rho(X)\phi(Y) - \bar{g}(\bar{R}(\xi,Y)X, N) - \bar{g}(\bar{R}(L,Y)X, L).$$

Using (2.13) and the first Bianchi's identity, we obtain

$$R^{(0,2)}(X, Y) - R^{(0,2)}(Y, X) = 2d\tau(X, Y).$$

This shows that $R^{(0,2)}$ is not symmetric. A tensor field $R^{(0,2)}$ of M is called its *induced Ricci tensor* and denoted by *Ric* if it is symmetric. In this case, Mis called *Ricci flat* if Ric = 0. M is called an *Einstein manifold* if there exists a smooth function κ such that

Let $\nabla_X^{\ell} N = \pi(\bar{\nabla}_X N)$, where π is the projection morphism of $T\bar{M}$ on ltr(TM). Then ∇^{ℓ} is a linear connection on ltr(TM). We say that ∇^{ℓ} is a lightlike transversal connection. Define a curvature tensor R^{ℓ} on ltr(TM) by

$$R^{\ell}(X,Y)N = \nabla^{\ell}_{X}\nabla^{\ell}_{Y}N - \nabla^{\ell}_{Y}\nabla^{\ell}_{X}N - \nabla^{\ell}_{[X,Y]}N.$$

If R^{ℓ} vanishes identically, then the lightlike transversal connection ∇^{ℓ} is said to be *flat*. This definition comes from the definition of *flat normal connection* [1] in the theory of classical geometry of non-degenerate submanifolds. We quote the following result (see [9, 10]).

Theorem 2.1. Let M be a half lightlike submanifold of a semi-Riemannian manifold $(\overline{M}, \overline{g})$. The following assertions are equivalent:

- (1) The lightlike transversal connection of M is flat, i.e., $R^{\ell} = 0$.
- (2) The 1-form τ is closed, i.e., $d\tau = 0$, on any $\mathcal{U} \subset M$.
- (3) The Ricci type tensor $R^{(0,2)}$ is an induced Ricci tensor of M.

Note 1. $d\tau$ is independent to the choice of the section $\xi \in \Gamma(TM^{\perp})$. Indeed, suppose τ and $\bar{\tau}$ are 1-forms with respect to the sections ξ and $\bar{\xi}$, respectively. By directed calculation, it follows that $d\tau = d\bar{\tau}$ [5]. In case $d\tau = 0$, by the cohomology theory, there exists a smooth function f such that $\tau = df$. Consequently we get $\tau(X) = X(f)$. If we take $\bar{\xi} = \lambda \xi$, it follows that $\tau(X) = \bar{\tau}(X) + X(\ln \lambda)$. Setting $\lambda = \exp(f)$ in this equation, we get $\bar{\tau} = 0$. Thus if $d\tau = 0$, we can take a 1-form τ such that $\tau = 0$. We call the pair $\{\xi, N\}$ whose corresponding 1-form τ vanishes the *canonical null pair* of M.

3. Indefinite Kaehler manifolds

Let $\overline{M} = (\overline{M}, J, \overline{g})$ be a real even dimensional indefinite Kaehler manifold, where \overline{g} is a semi-Riemannian metric of index q = 2v, $0 < v < \frac{1}{2}(\dim \overline{M})$, and J is an almost complex structure on \overline{M} such that, for all $X, Y \in \Gamma(T\overline{M})$,

(3.1)
$$J^2 = -I, \quad \bar{g}(JX, JY) = \bar{g}(X, Y), \quad (\bar{\nabla}_X J)Y = 0.$$

Let (M, g) be a half lightlike submanifold of an indefinite Kaeler manifold M. Due to [7, 8], we choose a screen distribution S(TM) such that J(Rad(TM)), J(ltr(TM)) and $J(S(TM^{\perp}))$ are vector subbundles of S(TM). In this case, the screen distribution S(TM) is expressed as follow:

$$S(TM) = \{J(Rad(TM)) \oplus J(ltr(TM))\} \oplus_{orth} J(S(TM^{\perp})) \oplus_{orth} H_o,$$

where H_o is a non-degenerate almost complex distribution with respect to J, *i.e.*, $J(H_o) = H_o$. Denote $H' = J(ltr(TM)) \oplus_{orth} J(S(TM^{\perp}))$. Then (3.2) $TM = H \oplus H'$,

where ${\cal H}$ is a 2-lightlike almost complex distribution on ${\cal M}$ such that

$$H = Rad(TM) \oplus_{orth} J(Rad(TM)) \oplus_{orth} H_o.$$

Consider two lightlike and one spacelike vector fields $\{U,V\}$ and W such that

(3.3)
$$U = -JN, \quad V = -J\xi, \quad W = -JL.$$

Denote by S the projection morphism of TM on H. By (3.2), for any vector field X on M, JX is expressed as follow

$$(3.4) JX = FX + u(X)N + w(X)L,$$

DAE HO JIN

where u, v and w are 1-forms locally defined on M by

(3.5)
$$u(X) = g(X, V), \quad v(X) = g(X, U), \quad w(X) = g(X, W)$$

and F is a tensor field of type (1,1) globally defined on M by $F = J \circ S$. Applying $\overline{\nabla}_X$ to (3.3) and using the Gauss-Weingarten formulas, we have

$$(3.6) B(X,U) = C(X,V), \ C(X,W) = D(X,U), \ B(X,W) = D(X,V),$$

- (3.7) $\nabla_X U = F(A_N X) + \tau(X)U + \rho(X)W,$
- (3.8) $\nabla_X V = F(A_{\xi}^* X) \tau(X)V \phi(X)W,$
- (3.9) $\nabla_X W = F(A_L X) + \phi(X)U.$

Theorem 3.1. Let M be a half lightlike submanifold of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature such that ζ is tangent to M. Then

$$f_1 = 0,$$
 $f_2 \theta(V) = f_2 \theta(W) = 0,$ $f_2 \alpha = 0.$

Proof. Comparing the tangential, lightlike transversal and co-screen components of the two equations (1.1) and (2.12), we get

$$(3.10) \quad R(X,Y)Z = f_1\{\bar{g}(Y,Z)X - \bar{g}(X,Z)Y\} \\ + f_2\{\bar{g}(Y,Z)\theta(X)\zeta - \bar{g}(X,Z)\theta(Y)\zeta \\ + \theta(Y)\theta(Z)X - \theta(X)\theta(Z)Y\} \\ + B(Y,Z)A_NX - B(X,Z)A_NY \\ + D(Y,Z)A_LX - D(X,Z)A_LY, \\ (3.11) \quad (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) + \tau(X)B(Y,Z) - \tau(Y)B(X,Z)$$

$$+ \phi(X)D(Y,Z) - \phi(Y)D(X,Z) = 0,$$

(3.12)
$$(\nabla_X D)(Y,Z) - (\nabla_Y D)(X,Z) + \rho(X)B(Y,Z) - \rho(Y)B(X,Z) = 0.$$

Taking the scalar product with N to (2.14), we have

$$g(R(X,Y)PZ, N) = (\nabla_X C)(Y,PZ) - (\nabla_Y C)(X,PZ) - \tau(X)C(Y,PZ) + \tau(Y)C(X,PZ).$$

Substituting (3.10) into this equation and using $(2.7)_2$ and $(2.8)_2$, we obtain

$$(3.13) \qquad (\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ) - \tau(X)C(Y, PZ) + \tau(Y)C(X, PZ) - \rho(X)D(Y, PZ) + \rho(Y)D(X, PZ) = f_1\{g(Y, PZ)\eta(X) - g(X, PZ)\eta(Y)\} + f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(PZ) + \alpha f_2\{\theta(X)g(Y, PZ) - \theta(Y)g(X, PZ)\}.$$

Applying ∇_X to $(3.6)_1 \colon B(Y,U) = C(Y,V)$, we have $(\nabla_X B)(Y,U) = (\nabla_X C)(Y,V) + g(A_N Y, \nabla_X V) - g(A_{\mathcal{E}}^* Y, \nabla_X U).$ Using (3.1), (3.4) and $(3.6)\sim(3.8)$, the last equation is reduced to

$$(\nabla_X B)(Y,U) = (\nabla_X C)(Y,V) - 2\tau(X)C(Y,V) - \phi(X)D(Y,U) - \rho(X)D(Y,V) - g(A_{\varepsilon}^*X, F(A_NY)) - g(A_{\varepsilon}^*Y, F(A_NX)).$$

Substituting this equation into (3.11) such that Z = U and using (3.7), we get

$$(\nabla_X C)(Y,V) - (\nabla_Y C)(X,V) - \tau(X)C(Y,V) + \tau(Y)C(X,V) - \rho(X)D(Y,V) + \rho(Y)D(X,V) = 0.$$

Comparing this equation with (3.13) such that PZ = V, we obtain

(3.14)
$$f_1\{\eta(X)u(Y) - \eta(Y)u(X)\} + f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(V) + f_2\alpha\{\theta(X)u(Y) - \theta(Y)u(X)\} = 0.$$

Replacing Y by ξ to this equation and using the fact that $\theta(\xi) = 0$, we have

$$f_1 u(X) + f_2 \theta(X) \theta(V) = 0$$

Taking X = V and X = U to this equation by turns, we get

$$f_2\theta(V) = 0, \qquad f_1 + f_2\theta(U)\theta(V) = 0.$$

From these two equations, we see that $f_1 = 0$. Taking $X = \zeta$ and Y = U to (3.14) and using the facts that $u(\zeta) = \theta(V)$ and $f_2\theta(V) = 0$, we have $f_2\alpha = 0$. Applying ∇_X to (3.6)₂: D(Y,U) = C(Y,W), and using (2.7), (2.8) and (3.7), we have

$$\begin{split} (\nabla_X D)(Y,U) &= (\nabla_X C)(Y,W) + g(A_{\scriptscriptstyle N}Y,\nabla_X W) \\ &\quad - g(A_{\scriptscriptstyle L}Y,\nabla_X U) + \phi(Y)C(X,U). \end{split}$$

Using $(2.8)_2$, (3.1), (3.4), (3.6), (3.7) and (3.9), we have

$$\begin{aligned} (\nabla_X D)(Y,U) \\ &= (\nabla_X C)(Y,W) - \tau(X)C(Y,W) - \rho(X)D(Y,W) - \rho(X)B(Y,U) \\ &+ \phi(X)C(Y,U) + \phi(Y)C(X,U) - g(A_LX,F(A_NY)) - g(A_LY,F(A_NX)). \end{aligned}$$

Substituting this equation into (3.11) such that Z = U and using (3.7), we get

$$(\nabla_X C)(Y,W) - (\nabla_Y C)(X,W) - \tau(X)C(Y,W) + \tau(Y)C(X,W) - \rho(X)D(Y,W) + \rho(Y)D(X,W) = 0.$$

Comparing this equation with (3.13) such that PZ = W, we obtain

$$f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(W) = 0.$$

Taking $Y = \zeta$ and $Y = \xi$ to this equation, we get $f_2\theta(W) = 0$.

DAE HO JIN

4. Totally umbilical screen distribution

If \overline{M} is an indefinite Kaehler manifold of quasi-constant curvature, using (1.1) and the fact that $f_1 = 0$, we see that $\overline{g}(\overline{R}(\xi, X)Y, N) = f_2\theta(X)\theta(Y)$, $\overline{g}(\overline{R}(\xi, X)Y, N) = f_2\theta(X)\theta(Y)$ and $\overline{Ric}(X,Y) = f_2\{g(X,Y) + (n+1)\theta(X)\theta(Y)\}$. Thus (2.17) is reduced to

(4.1)
$$\begin{aligned} R^{(0,\,2)}(X,Y) &= f_2\{g(X,Y) + (n-1)\theta(X)\theta(Y)\} + \rho(X)\phi(Y) \\ &+ B(X,Y)tr\,A_N + D(X,Y)tr\,A_L \\ &- g(A_NX,\,A_\xi^*Y) - g(A_LX,A_LY). \end{aligned}$$

Definition. A screen distribution S(TM) is called *totally umbilical* [4, 5] in M if there exists a smooth function γ such that $A_N X = \gamma P X$, or equivalently,

(4.2)
$$C(X, PY) = \gamma g(X, Y)$$

In case $\gamma = 0$, we say that S(TM) is totally geodesic in M.

Note 2. If M is irrotational and S(TM) is totally umbilical, then (4.1) reduces

(4.3)
$$R^{(0,2)}(X,Y) = f_2\{g(X,Y) + (n-1)\theta(X)\theta(Y)\} + B(X,Y)tr A_N + D(X,Y)tr A_L - \gamma g(X, A_{\xi}^*Y) - g(A_LX, A_LY).$$

As A_{ξ}^{*} is self-adjoint, it follows that $R^{(0,2)}$ is symmetric, *i.e.*, $R^{(0,2)}$ is the induced Ricci tensor *Ric* of *M*. Therefore, $d\tau = 0$ and the transversal connection is flat by Theorem 2.1. As $d\tau = 0$, we can take $\tau = 0$ by Note 1.

Theorem 4.1. Let M be a tatical half lightlike submanifold of an indefinite Kaehler manifold \overline{M} of a quasi-constant curvature such that ζ is tangent to M. If S(TM) is totally umbilical, then we have the following results:

- (1) S(TM) is totally geodesic and parallel distribution,
- (2) *M* is locally a product manifold $C_{\xi} \times M^*$, where C_{ξ} is a null geodesic tangent to TM^{\perp} , and M^* is a leaf of S(TM),
- (3) $f_1 = f_2 = 0$, i.e., \overline{M} is flat, and the curvature tensor R is given by

$$R(X,Y)Z = D(Y,Z)A_L X - D(X,Z)A_L Y.$$

(4) Moreover, if M is an Einstein manifold, then M is Ricci flat.

Proof. As M is statical, the 1-forms ϕ and ρ are satisfied $\phi = \rho = 0$. Applying ∇_X to $C(Y, PZ) = \gamma g(Y, PZ)$ and using (2.11), we have

$$(\nabla_X C)(Y, PZ) = (X\gamma)g(Y, PZ) + \gamma B(X, PZ)\eta(Y).$$

Substituting this and (4.2) into (3.13) with $f_1 = f_2 \alpha = \rho = 0$, we obtain

(4.4)
$$(X\gamma)g(Y,Z) - (Y\gamma)g(X,Z) + \gamma\{B(X,Z)\eta(Y) - B(Y,Z)\eta(X)\}$$
$$= f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(Z).$$

Taking Y = U, Z = V and Y = V, Z = U to (4.4) by turns and using (3.9)₁, (4.2) and the facts that $f_2\theta(V) = 0$ and $\eta(V) = 0$, we obtain

$$X\gamma = (U\gamma)u(X),$$
 $X\gamma = (V\gamma)v(X)$

From these equations, we get $X\gamma = 0$. Thus γ is a constant. (4.4) reduces

$$\{\gamma B(X,Z) + f_2\theta(X)\theta(Z)\}\eta(Y) = \{\gamma B(Y,Z) + f_2\theta(Y)\theta(Z)\}\eta(X).$$

Taking $Y = \xi$ to this equation and using $(2.9)_1$, we have

(4.5)
$$\gamma B(X,Y) = -f_2 \theta(X) \theta(Y).$$

Taking Y = U to this equation and using (3.3), (3.5) and (4.2), we have

(4.6)
$$\gamma^2 u(X) = -f_2 \theta(X) \theta(U).$$

Assume that $f_2 \neq 0$. Taking $X = \zeta$ to (4.6), we have

$$\gamma^2 \theta(V) = -f_2 \theta(U).$$

As $f_2 \neq 0$, if we product with f_2 to the last equation and use the fact that $f_2\theta(V) = 0$, then we obtain $f_2\theta(U) = 0$. Taking X = U to (4.6) and using the fact that $f_2\theta(U) = 0$, we get $\gamma = 0$. As $\gamma = 0$, taking $X = Y = \zeta$ to (4.5), we have $f_2 = 0$. It is a contradiction. Therefore, $f_2 = 0$. As $f_2 = 0$, from (4.6), we obtain $\gamma = 0$.

(1) As $\gamma = C = 0$, S(TM) is totally geodesic and, from (2.4) we see that S(TM) is a parallel distribution.

(2) As S(TM) is a parallel distribution, Rad(TM) is also an auto-parallel distribution due to (2.5) and (2.10). As $TM = Rad(TM) \oplus S(TM)$, by the decomposition theorem of de Rham [3], M is locally a product manifold $\mathcal{C}_{\xi} \times M^*$, where \mathcal{C}_{ξ} is a null geodesic tangent to Rad(TM) and M^* is a leaf of S(TM).

(3) As $f_1 = f_2 = 0$, \overline{M} is flat. As $f_1 = f_2 = A_N = 0$, from (3.10), R is given by

$$R(X,Y)Z = D(Y,Z)A_L X - D(X,Z)A_L Y.$$

(4) As C = 0, using (2.6), (2.8) and (3.6)_{1,2}, we have

$$B(X,U) = 0, \qquad D(X,U) = 0, \qquad A_{\xi}^{*}U = 0, \qquad A_{{}_{L}}X = 0.$$

Substituting (2.18) into (4.1) such that $f_2 = 0$ and Y = U and then, using the last equations, we obtain $\kappa = 0$. Therefore, M is Ricci flat.

Theorem 4.2. Let M be an Einstein statical half lightlike submanifold of an indefinite Kaehler manifold \overline{M} of a quasi-constant curvature such that ζ is tangent to M. If S(TM) is totally umbilical, then M is Ricci flat.

Proof. As C = 0, from $(3.6)_2$ and the facts that $\phi = 0$ and $\rho = 0$, we obtain

(4.7)
$$D(X, U) = 0, \qquad A_L U = 0.$$

As $f_2 = \gamma = A_N = 0$, from (4.3), the induced Ricci tensor $R^{(0,2)}$ is given by

(4.8) $R^{(0,2)}(X,Y) = D(X,Y)tr A_L - g(A_L X, A_L Y),$

where $\ell = tr A_{L}$. As M is Einstein, substituting (2.18) into (4.8), we have

$$g(A_L X, A_L Y) - \ell g(A_L X, Y) + \kappa g(X, Y) = 0.$$

Taking X = U and Y = V to this equation and using (4.7), we obtain $\kappa = 0$. Therefore M is Ricci flat.

Denote by $\mathcal{G} = J(Rad(TM)) \oplus_{orth} J(S(TM^{\perp})) \oplus_{orth} H_o$. Then \mathcal{G} is a complementary vector subbundle to J(ltr(TM)) in S(TM) and we have

$$S(TM) = J(ltr(TM)) \oplus \mathcal{G}.$$

Theorem 4.3. Let M be a statical half lightlike submanifold of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature such that ζ is tangent to M. If S(TM) is totally umbilical, then M is locally a product manifold $C_{\xi} \times C_{U} \times M^{\sharp}$, where C_{ξ} and C_{U} are null geodesics tangent to Rad(TM) and J(ltr(TM))respectively and M^{\sharp} is a leaf of \mathcal{G} .

Proof. As M is statical and S(TM) is totally umbilical, we have

(4.9)
$$\nabla_X U = 0.$$

due to $A_N = \tau = \rho = 0$. Thus J(ltr(TM)) is a parallel distribution on M. From (2.5) and (2.10), Rad(TM) is also a parallel distribution on M. Using (4.9), we derive

$$g(\nabla_X Y, U) = 0, \qquad g(\nabla_X V, U) = 0, \qquad g(\nabla_X W, U) = 0,$$

for all $X \in \Gamma(\mathcal{G})$ and $Y \in \Gamma(H_o)$. Thus \mathcal{G} is also parallel. By the decomposition theorem of de Rham [3], M is locally a product manifold $\mathcal{C}_{\xi} \times \mathcal{C}_{U} \times M^{\sharp}$, where \mathcal{C}_{ξ} and \mathcal{C}_{U} are null geodesics tangent to Rad(TM) and J(ltr(TM)) respectively and M^{\sharp} is a leaf of \mathcal{G} .

5. Screen conformal lightlike hypersurfaces

Definition. A half lightlike submanifold M is called *screen conformal* [6, 7] if there exists a non-vanishing function φ such that $A_N = \varphi A_{\varepsilon}^*$, or equivalently,

(5.1)
$$C(X, PY) = \varphi B(X, Y)$$

If φ is a non-zero constant, then we say that M is screen homothetic.

Note 3. If M is irrotational and screen conformal, then (4.1) is reduced to

(5.2)
$$R^{(0,2)}(X,Y) = f_2\{g(X,Y) + (n-1)\theta(X)\theta(Y)\} + B(X,Y)tr A_N + D(X,Y)tr A_L - \varphi g(A_{\xi}^*X, A_{\xi}^*Y) - g(A_LX, A_LY).$$

Thus $R^{(0,2)}$ is symmetric, $d\tau = 0$ and the transversal connection is flat by Theorem 2.1. In this section, since $d\tau = 0$, we also take $\tau = 0$ as Section 4.

Proposition 5.1. Let M be a half lightlike submanifold of an indefinite Kaehler manifold \overline{M} of a quasi-constant curvature such that ζ is tangent to M. If Mis irrotational and screen conformal, then the curvature function f_2 is satisfied $f_2\theta(U) = 0$. Moreover, M is statical and screen homothetic, then $f_2 = 0$.

Proof. Applying ∇_X to $C(Y, PZ) = \varphi B(Y, PZ)$, we have

$$(\nabla_X C)(Y, PZ) = (X\varphi)B(Y, PZ) + \varphi(\nabla_X B)(Y, PZ).$$

Substituting this into (3.13) such that $\tau = 0$ and using (3.11), we obtain

$$(X\varphi)B(Y,PZ) - (Y\varphi)B(X,PZ) - \rho(X)D(Y,PZ) + \rho(Y)D(X,PZ)$$

= $f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(PZ).$

Replacing Y by ξ to this and using (2.9) and the fact that $\theta(\xi) = 0$, we get

(5.3)
$$(\xi\varphi)B(X,Y) - \rho(\xi)D(X,Y) = f_2\theta(X)\theta(Y)$$

Taking Y = V to (5.3) and using (3.6)₃ and the fact that $f_2\theta(V) = 0$, we have

$$(\xi\varphi)B(X,V) - \rho(\xi)B(X,W) = 0.$$

Replacing Y by U to (5.3) and using $(3.6)_{1,2}$, we have

 $(\xi\varphi)C(X,V) - \rho(\xi)C(X,W) = f_2\theta(X)\theta(U).$

From the last two equations and (5.1), we obtain $f_2\theta(X)\theta(U) = 0$. Replacing X by ζ , we get $f_2\theta(U) = 0$. If M is statical and screen homothetic, then $\xi\varphi = 0$ and $\rho(\xi) = 0$. Therefore, taking $X = Y = \zeta$ to (5.3), we get $f_2 = 0$. \Box

Theorem 5.2. Let M be an Einstein half lightlike submanifold of an indefinite Kaehler manifold \overline{M} of a quasi-constant curvature such that ζ is tangent to M. If M is irrotational and screen conformal, then the function κ , given by (2.18), is satisfied $\kappa = f_2$. Moreover, M is statical and screen homothetic, then it is Ricci flat, i.e., $\kappa = 0$.

Proof. As $\{U, V\}$ is a null basis of $J(Rad(TM)) \oplus J(ltr(TM))$, the vector fields

$$\mu = U - \varphi V, \qquad \quad \nu = U + \varphi V$$

form an orthogonal basis of $J(Rad(TM)) \oplus J(ltr(TM))$. From (3.5) and (5.1), we obtain

(5.4)
$$B(X,\mu) = 0, \qquad A_{\xi}^*\mu = 0.$$

From (2.8), $(3.6)_{2,3}$ and the fact that $\phi = 0$, we also obtain

(5.5)
$$D(X, \mu) = 0, \qquad A_{L}\mu = \rho(\mu)\xi.$$

As $f_2\theta(V) = 0$ and $f_2\theta(U) = 0$, we also have

(5.6)
$$f_2\theta(\mu) = 0, \qquad f_2\theta(\nu) = 0.$$

Taking $X = Y = \mu$ to (5.2) and using (5.4)~(5.6), we have $\kappa = f_2$. If M is statical and screen homothetic, then $\kappa = 0$ as $f_2 = 0$.

Let $\mathcal{H}' = Span\{\mu\}$. Then $\mathcal{H} = H_o \oplus_{orth} Span\{\nu, W\}$ is a complementary vector subbundle to \mathcal{H}' in S(TM) and we have the following decomposition

$$(5.7) S(TM) = \mathcal{H}' \oplus_{orth} \mathcal{H}$$

Theorem 5.3. Let M be a statical and screen homothetic half lightlike submanifold of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature such that ζ is tangent to M. Then M is locally a product manifold $C_{\xi} \times C_{\mu} \times M^{\natural}$, where C_{ξ} and C_{μ} are null and non-null geodesics tangent to Rad(TM) and \mathcal{H}' , respectively and M^{\natural} is a leaf of \mathcal{H} .

Proof. As M is statical and screen homothetic, using (3.7), (3.8) and the fact that F is linear operator, we have

(5.8)
$$\nabla_X \mu = 0$$

This implies that \mathcal{H}' is a parallel distribution on M. From (2.5) and (2.10), Rad(TM) is also a parallel distribution on M. Using (5.8), we derive

$$g(\nabla_X Y, \mu) = 0, \qquad g(\nabla_X \nu, \mu) = 0, \qquad g(\nabla_X W, \mu) = 0,$$

for all $X \in \Gamma(\mathcal{H})$ and $Y \in \Gamma(H_o)$. Thus \mathcal{H} is also parallel. By the decomposition theorem of de Rham [3], M is locally a product manifold $\mathcal{C}_{\xi} \times \mathcal{C}_{\mu} \times M^{\natural}$, where \mathcal{C}_{ξ} and \mathcal{C}_{μ} are null and non-null geodesics tangent to Rad(TM) and \mathcal{H}' respectively and M^{\natural} is a leaf of \mathcal{H} .

References

- [1] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
- [2] B. Y. Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor (N. S.) 26 (1972), 318–322.
- [3] G. de Rham, Sur la réductibilité d'un espace de Riemannian, Comm. Math. Helv. 26 (1952), 328-344.
- [4] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
- [5] K. L. Duggal and D. H. Jin, Half-lightlike submanifolds of codimension 2, Math. J. Toyama Univ. 22 (1999), 121–161.
- [6] D. H. Jin, A characterization of screen conformal half lightlike submanifolds, Honam Math. J. 31 (2009), no. 1, 17–23.
- [7] _____, Geometry of screen conformal real half lightlike submanifolds, Bull. Korean Math. Soc. 47 (2010), no. 4, 701–714.
- [8] _____, Real half lightlike submanifolds with totally umbilical properties, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 17 (2010), no. 1, 51–63.
- [9] _____, Transversal half lightlike submanifolds of an indefinite Sasakian manifold, J. Korean Soc Math. Edu. Ser. B Pure Appl. Math. 18 (2011), no. 1, 51–61.
- [10] _____, Half lightlike submanifolds of an indefinite Sasakian manifold, J. Korean Soc Math. Edu. Ser. B Pure Appl. Math. 18 (2011), no. 2, 173–183.
- [11] _____, A semi-Riemannian manifold of quasi-constant curvature admits some half lightlike submanifolds, Bull. Korean Math. Soc. 50 (2013), no. 3, 1041–1048.
- [12] _____, A semi-Riemannian manifold of quasi-constant curvature admits statical half lightlike submanifolds, submitted in Hacettepe Journal of Mathematics and Statistics.

- [13] D. H. Jin and J. W. Lee, A semi-Riemannian manifold of quasi-constant curvature admits some lightlike submanifolds, accepted in International Journal of Mathematical Analysis.
- [14] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

DEPARTMENT OF MATHEMATICS DONGGUK UNIVERSITY KYONGJU 780-714, KOREA *E-mail address*: jindh@dongguk.ac.kr