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ON THE GENERALIZATIONS OF BRÜCK CONJECTURE

Abhijit Banerjee and Bikash Chakraborty

Abstract. We obtain similar types of conclusions as that of Brück [1]
for two differential polynomials which in turn radically improve and gen-
eralize several existing results. Moreover a number of examples have been
exhibited to justify the necessity or sharpness of some conditions used in
the paper. At last we pose an open problem for future research.

1. Introduction definitions and results

In the paper by meromorphic function we always mean a function which is
meromorphic in the open complex plane C.

If for some a ∈ C ∪ {∞}, f and g have same set of a-points with the same
multiplicities, we say that f and g share the value a CM (counting multiplici-
ties) and if we do not consider the multiplicities, then f , g are said to share the
value a IM (ignoring multiplicities). When a = ∞ the zeros of f −a means the
poles of f . Let m be a positive integer or infinity and a ∈ C∪{∞}. We denote
by Em)(a; f) the set of all a-points of f with multiplicities not exceeding m,
where an a-point is counted according to its multiplicity. Also we denote by
Em)(a; f) the set of distinct a-points of f(z) with multiplicities not greater than

m. If for some a ∈ C ∪ {∞}, Em)(a, f) = Em)(a, g) (Em)(a, f) = Em(a, g))
holds for m = ∞ we say that f , g share the value a CM (IM).

It will be convenient to let E denote any set of positive real numbers of
finite linear measure, not necessarily the same at each occurrence. For any non-
constant meromorphic function f , we denote by S(r, f) any quantity satisfying

S(r, f) = o(T (r, f)) (r → ∞, r 6∈ E).

A meromorphic function a(6≡ ∞) is called a small function with respect to
f provided that T (r, a) = S(r, f) as (r → ∞, r 6∈ E). If a = a(z) is a small
function we define that f and g share a IM or a CM according as f − a and
g − a share 0 CM or 0 IM respectively.

We use I to denote any set of infinite linear measure of 0 < r < ∞.
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Also it is known to us that the hyper order of f(z), denoted by ρ2(f), is
defined by

ρ2(f) = lim sup
r→∞

log logT (r, f)

log r
.

Nevanlinna’s uniqueness theorem shows that two meromorphic functions f and
g share 5 values IM are identical. Rubel and Yang [15] first showed for entire
functions that in the special situation where g is the derivative of f , one usually
needs sharing of only two values CM for their uniqueness. 2 years later, Mues
and Steinmetz [14] proved that actually in the above case one does not even
need the multiplicities. There results were as follows.

Theorem A ([14]). Let f be a non-constant entire function. If f and f
′

share

two distinct values a, b IM, then f
′

≡ f .

Subsequently, there were more generalizations with respect to higher deriva-
tives as well.

Natural question would be to investigate the relation between an entire func-
tion and its derivative counterpart for one CM shared value. In 1996, in this
direction the following famous conjecture was proposed by Brück [1]:

Conjecture. Let f be a non-constant entire function such that the hyper order

ρ2(f) of f is not a positive integer or infinite. If f and f
′

share a finite value

a CM, then f
′

−a
f−a

= c, where c is a non zero constant.

Brück himself proved the conjecture for a = 0. For a 6= 0, Brück [1] showed

that under the assumptionN(r, 0; f
′

) = S(r, f) the conjecture was true without
any growth condition when a = 1.

Theorem B ([1]). Let f be a non-constant entire function. If f and f
′

share

the value 1 CM and if N(r, 0; f
′

) = S(r, f), then f
′

−1
f−1 is a nonzero constant.

Following example shows the fact that one can not simply replace the value
1 by a small function a(z)(6≡ 0,∞).

Example 1.1. Let f = 1 + ee
z

and a(z) = 1
1−e−z .

By Lemma 2.6 of [4, p. 50] we know that a is a small function of f . Also it can

be easily seen that f and f
′

share a CM andN(r, 0; f
′

) = 0 but f−a 6= c (f
′

−a)

for every nonzero constant c. We note that f − a = e−z (f
′

− a). So in this
case additional suppositions are required.

However for entire function of finite order, Yang [16] removed the supposition

N(r, 0; f
′

) = 0 and obtained the following result.

Theorem C ([16]). Let f be a non-constant entire function of finite order and

let a(6= 0) be a finite constant. If f , f (k) share the value a CM, then f(k)−a
f−a

is

a nonzero constant, where k(≥ 1) is an integer.
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Theorem C may be considered as a solution to the Brück conjecture. Next
we consider the following examples which show that in Theorem B one can not
simultaneously replace “CM” by “IM” and “entire function” by “meromorphic
function”.

Example 1.2. f(z) = 1 + tan z.

Clearly f(z)−1 = tan z and f
′

(z)−1 = tan2 z share 1 IM andN(r, 0; f
′

) = 0.

Example 1.3. f(z) = 2
1−e−2z .

Clearly f
′

(z) = − 4e−2z

(1−e−2z)2 . Here f − 1 = 1+e−2z

1−e−2z and f ′ − 1 = − (1+e−2z)2

(1−e−2z)2 .

Here N(r, 0; f
′

) = 0 So in both the examples we see that the conclusion of
Theorem B ceases to hold.

From the above discussion it is natural to ask the following question.

Question 1.1. Can the conclusion of Theorem B be obtained for a non-
constant meromorphic function sharing a small function IM together with its
k-th derivative counterpart?

Zhang [18] extended Theorem B to meromorphic function and also studied
the CM value sharing of a meromorphic function with its k-th derivative.

Meanwhile a new notion of scalings between CM and IM known as weighted
sharing ([5]-[6]), appeared in the uniqueness literature.

In 2004, Lahiri-Sarkar [9] employed weighted value sharing method to im-
prove the results of Zhang [18]. In 2005, Zhang [19] further extended the
results of Lahiri-Sarkar to a small function and proved the following result for
IM sharing.

Theorem D ([19]). Let f be a non-constant meromorphic function and k(≥ 1)
be integer. Also let a ≡ a(z) (6≡ 0,∞) be a meromorphic small function.

Suppose that f − a and f (k) − a share 0 IM. If

(1.1) 4N(r,∞; f)+3N2

(

r, 0; f (k)
)

+2N
(

r, 0; (f/a)
′

)

< (λ+o(1)) T
(

r, f (k)
)

for r ∈ I, where 0 < λ < 1, then f(k)−a
f−a

= c for some constant c ∈ C/{0}.

We now recall the following two theorems due to Liu and Yang [11] in the
direction of IM sharing related to Theorem B.

Theorem E ([11]). Let f be a non-constant meromorphic function. If f and

f
′

share 1 IM and if

(1.2) N(r,∞; f) +N
(

r, 0; f
′

)

< (λ + o(1)) T
(

r, f
′

)

for r ∈ I, where 0 < λ < 1
4 , then

f
′

−1
f−1 ≡ c for some constant c ∈ C/{0}.
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Theorem F ([11]). Let f be a non-constant meromorphic function and k be a

positive integer. If f and f (k) share 1 IM and

(1.3) (3k + 6)N(r,∞; f) + 5N(r, 0; f) < (λ+ o(1)) T
(

r, f (k)
)

for r ∈ I, where 0 < λ < 1, then f(k)−1
f−1 ≡ c for some constant c ∈ C/{0}.

In 2008, improving the result of Zhang [19], Zhang and Lü [20] further
investigated the analogous problem of Brück conjecture for the n-th power of
a meromorphic function sharing a small function with its k-th derivative and
obtained the following theorem.

Theorem G ([20]). Let f be a non-constant meromorphic function and k(≥ 1)
and n(≥ 1) be integers. Also let a ≡ a(z) (6≡ 0,∞) be a meromorphic small

function. Suppose that fn − a and f (k) − a share 0 IM. If

4N(r,∞; f) +N
(

r, 0; f (k)
)

+ 2N2

(

r, 0; f (k)
)

+ 2N
(

r, 0; (fn/a)
′

)

(1.4)

< (λ+ o(1)) T
(

r, f (k)
)

for r ∈ I, where 0 < λ < 1, then f(k)−a
fn−a

= c for some constant c ∈ C/{0}.

At the end of [20] the following question was raised by Zhang and Lü [20].
What will happen if fn and [f (k)]m share a small function?
In order to answer the above question, Liu [10] obtained the following result.

Theorem H ([10]). Let f be a non-constant meromorphic function and k(≥ 1),
n(≥ 1) and m(≥ 2) be integers. Also let a ≡ a(z) (6≡ 0,∞) be a meromorphic

small function. Suppose that fn − a and (f (k))m − a share 0 IM. If

4

m
N(r,∞; f) +

5

m
N
(

r, 0; f (k)
)

+
2

m
N
(

r, 0; (fn/a)
′

)

(1.5)

< (λ+ o(1)) T
(

r, f (k)
)

for r ∈ I, where 0 < λ < 1, then (f(k))m−a

fn−a
= c for some constant c ∈ C/{0}.

Next we recall the following definition.

Definition 1.1. Let n0j, n1j , . . . , nkj be non negative integers. The expression

Mj[f ] = (f)n0j (f (1))n1j . . . (f (k))nkj is called a differential monomial generated

by f of degree d(Mj) =
∑k

i=0 nij and weight ΓMj
=
∑k

i=0(i + 1)nij .

The sum P [f ] =
∑t

j=1 bjMj [f ] is called a differential polynomial generated

by f of degree d(P ) = max{d(Mj) : 1 ≤ j ≤ t} and weight ΓP = max{ΓMj
:

1 ≤ j ≤ t}, where T (r, bj) = S(r, f) for j = 1, 2, . . . , t.
The numbers d(P ) = min{d(Mj) : 1 ≤ j ≤ t} and k (the highest order of

the derivative of f in P [f ]) are called respectively the lower degree and order
of P [f ].

P [f ] is said to be homogeneous if d(P ) = d(P ).
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P [f ] is called a Linear Differential Polynomial generated by f if d(P ) = 1.
Otherwise P [f ] is called Non-linear Differential Polynomial. We also denote by
µ = max {ΓMj

−d(Mj) : 1 ≤ j ≤ t} = max {n1j+2n2j+· · ·+knkj : 1 ≤ j ≤ t}.

As (f (k))m is simply a special differential monomial in f , it will be interesting
to investigate whether Theorems D-H can be extended up to differential poly-
nomial generated by f . In this direction recently Li and Yang [12] improved
Theorem D in the following manner.

Theorem I ([12]). Let f be a non-constant meromorphic function P [f ] be
a differential polynomial generated by f . Also let a ≡ a(z) (6≡ 0,∞) be a

small meromorphic function. Suppose that f − a and P [f ]− a share 0 IM and

(t− 1)d(P ) ≤
∑t

j=1 d(Mj). If

4N(r,∞; f) + 3N2 (r, 0;P [f ]) + 2N
(

r, 0; (f/a)
′

)

< (λ+ o(1)) T (r, P [f ])(1.6)

for r ∈ I, where 0 < λ < 1, then P [f ]−a

f−a
= c for some constant c ∈ C/{0}.

So we see that Theorem I always holds for a monomial without any condition
on its degree. But for general differential polynomial one can not eliminate the
supposition (t − 1)d(P ) ≤

∑t

j=1 d(Mj) in the above theorem. So whether in
Theorem I, the condition over the degree can be removed, sharing notion can
further be relaxed, (1.6) can further be weakened, are all open problems.

We also observe that the afterward research on Brück and its generalization,
one setting among the sharing functions has been restricted to only various
powers of f not involving any other variants such as derivatives of f , where
as the generalization have been made on the second setting. This observation
must motivate oneself to find the answer of the following question.

Question 1.2. Can Brück type conclusion be obtained when two different dif-
ferential polynomials share a small functions IM or even under relaxed sharing
notions?

The main intention of the paper is to obtain the possible answer of the
above question in such a way that it improves, unifies and generalizes all the
Theorems D-H. Following theorem is the main result of the paper. Henceforth
by bj , j = 1, 2, . . . , t and ci, i = 1, 2, . . . , l we denote small functions in f and

we also suppose that P [f ] =
∑t

j=1 bjMj [f ] and Q[f ] =
∑l

i=1 ciMi[f ] be two
differential polynomial generated by f .

Theorem 1.1. Let f be a non-constant meromorphic function, m(≥ 1) be a

positive integer or infinity and a ≡ a(z) (6≡ 0,∞) be a small meromorphic

function. Suppose that P [f ] and Q[f ] be two differential polynomial generated

by f such that Q[f ] contains at least one derivative. Suppose further that

Em)(a, P [f ]) = Em)(a,Q[f ]). If

4N(r,∞; f) +N2 (r, 0;Q[f ]) + 2N (r, 0;Q[f ]) +N
(

r, 0; (P [f ]/a)
′

)

(1.7)
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+N
(

r, 0; (P [f ]/a)
′

| (P [f ]/a) 6= 0
)

< (λ+ o(1)) T (r,Q[f ])

for r ∈ I, where 0 < λ < 1, then either a) Q[f ]−a

P [f ]−a
= c for some constant

c ∈ C/{0} or b) P [f ]Q[f ] − aQ[f ](1 + d) ≡ −da2 for a non-zero constant

d ∈ C.

In particular, if i) P [f ] = b1f
n + b2f

n−1 + b3f
n−2 + · · · + bt−1f or if ii)

d(Q) > 2d(P )− d(P ) and each monomial of Q[f ] contains a term involving a

power of f , then the conclusion (b) does not hold.

Remark 1.1. Clearly in Theorem 1.1 whenm = ∞ we have P [f ]−a andQ[f ]−a
share 0 IM where P [f ] = b1f

n + b2f
n−1 + b3f

n−2 + · · ·+ bt−1f and we obtain
the improved, extended and generalized version of Theorem I in the direction
of Question 1.1.

Following five examples show that (1.7) is not necessary when (i) and (ii) of
Theorem 1.1 occurs.

Example 1.4. Let f(z) = ez

ez+1 . P [f ] = f2, Q[f ] = f − f
′

. Then clearly P [f ]

and Q[f ] share 1 CM and Q[f ]−1
P [f ]−1 = 1, but (1.7) is not satisfied.

Example 1.5. Let f(z) = 1
ez+1 . P [f ] = f2 − f3, Q[f ] = −ff

′

. Then clearly

P [f ] and Q[f ] share 1 CM and Q[f ]−1
P [f ]−1 = 1, but (1.7) is not satisfied.

Example 1.6. Let f(z) = ez

ez+1 . P [f ] = f − f
′

, Q[f ] = f2 − 3ff
′3
+ f3f

′2
−

ff
′

f
′′′

+ ff
′

f
′′

. Then clearly P [f ] and Q[f ] share 1 CM and Q[f ]−1
P [f ]−1 = 1, but

(1.7) is not satisfied.

Example 1.7. Let f(z) = 1
ez+1 . P [f ] = (f

′

)2 − ff
′′

, Q[f ] = 2ff
′2

− f2f
′′

.

Then clearly P [f ] and Q[f ] share 1 CM and Q[f ]−1
P [f ]−1 = 1, but (1.7) is not

satisfied. Here we note that 3 = d(Q) > 2d(P )− d(P ) = 2.

Example 1.8. Let f(z) = 1
ez+1 . P [f ] = f

′2
, Q[f ] = ff

′′

− f2f
′

. Then clearly

P [f ] = Q[f ] = e2z

(ez+1)4
share 1

z
CM and

Q[f ]− 1
z

P [f ]− 1
z

= 1, but (1.7) is not satisfied.

We now give the next five examples the first two of which show that both
the conditions stated in (ii) are essential in order to obtain conclusion (a) in
Theorem 1.1 for homogeneous differential polynomials P [f ] where as the rest
three substantiate the same for non homogeneous differential polynomials.

Example 1.9. Let f(z) = sin z. P [f ] = f
′′2

− f
′2

+ 2if
′′

f
′′′

, Q[f ] = f2 −

2iff
′

− f
′′′2

. Then clearly P [f ] = −e−2iz and Q[f ] = −e2iz share 1 CM. Here

T (r,Q) = 2r
π
+O(1), (1.7) is satisfied, but Q[f ]−1

P [f ]−1 = e2iz , rather P [f ]Q[f ] = 1.



ON THE GENERALIZATIONS OF BRÜCK CONJECTURE 317

Example 1.10. Let f(z) = sin z. P [f ] = 3f2 + f
′2

− 2iff
′

, Q[f ] = f
′2

−

2iff
′

− f2. Then clearly P [f ] = 2 − e2iz and Q[f ] = e−2iz share 1 CM. Here

(1.7) is satisfied, but Q[f ]−1
P [f ]−1 = e−2iz, rather P [f ]Q[f ]− 2Q[f ] + 1 = 0.

Example 1.11. Let f(z) = cos z. P [f ] = f3+3if
′

f
′′′2

+3f
′2
f

′′

−3if
′

−if
′′′3

,

Q[f ] = 3f
′′

− 4f
′′3

+3if2f
′

+ if
′′′3

. Then clearly P [f ] = e3iz and Q[f ] = e−3iz

share 1 CM. Here (1.7) is satisfied, but Q[f ]−1
P [f ]−1 = −e−3iz rather P [f ]Q[f ] = 1.

We also note that here d(P ) 6= d(P ), 1 = d(Q) 6> 2d(P )− d(P ) = 5.

Example 1.12. Let f(z) = cos z. P [f ] = −2ff
′′

+ f
′2

− f
′

f
′′′

− f
′′

+ if
′′′

,

Q[f ] = −f + if
′′′

. Then clearly P [f ] = eiz + 2 and Q[f ] = −e−iz and so they

share 1 CM. Here (1.7) is satisfied, but Q[f ]−1
P [f ]−1 = −e−iz, rather P [f ]Q[f ] −

2Q[f ]+1 = 0. We also note that here d(P ) 6= d(P ), 1 = d(Q) 6> 2d(P )−d(P ) =
3.

Example 1.13. Let f(z) = cos z. P [f ] = −f − if
′

+ (1 + i)f
′2
+ (1 + i)f

′′2
,

Q[f ] = if − f
′′′

. Then clearly P [f ] = 1 + i − e−iz and Q[f ] = ieiz share both
i and 1 CM. Here (1.7) is satisfied and P [f ]Q[f ]− (1 + i)Q[f ] + i = 0. When

we consider i as the shared value then Q[f ]−i

P [f ]−i
= ieiz, on the other hand when

we consider 1 as the shared value then Q[f ]−1
P [f ]−1 = eiz. We also note that here

d(P ) 6= d(P ), 1 = d(Q) 6> 2d(P )− d(P ) = 3.

The following two examples show that in order to obtain conclusions (a) or
(b) of Theorem 1.1, (1.7) is essential.

Example 1.14. Let f(z) = sin z. P [f ] = if + f
′

, Q[f ] = 2f
′

− (f2 + f
′2
).

Then clearly P [f ] = eiz and Q[f ] = eiz + e−iz − 1 share 1 IM. Here neither of
the conclusions of Theorem 1.1 is satisfied, nor (1.7) is satisfied. We note that
Q[f ]−1
P [f ]−1 = (eiz−1)

eiz
and P [f ]Q[f ]− eizQ[f ] = 0.

Example 1.15. Let f(z) = cos z. P [f ] = f − if
′

, Q[f ] = 2f − (f
′2

+ f
′′2
).

Then clearly P [f ] = eiz and Q[f ] = eiz + e−iz − 1 share 1 IM. Here neither of
the conclusions of Theorem 1.1 is satisfied, nor (1.7) is satisfied. We note that
Q[f ]−1
P [f ]−1 = (eiz−1)

eiz
and P [f ]Q[f ]− eizQ[f ] = 0.

Though we use the standard notations and definitions of the value distribu-
tion theory available in [4], we explain some definitions and notations which
are used in the paper.

Definition 1.2 ([9]). Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f |≥ p) (N(r, a; f |≥ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not
less than p.
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(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not
greater than p.

Definition 1.3 (6, cf. [17]). For a ∈ C ∪ {∞} and a positive integer p we
denote by Np(r, a; f) the sum N(r, a; f)+N(r, a; f |≥ 2)+ · · ·+N(r, a; f |≥ p).

Clearly N1(r, a; f) = N(r, a; f).

Definition 1.4. Let k be a positive integer and for a ∈ C− {0}, Ek)(a; f) =

Ek)(a; g). Let z0 be a zero of f(z)− a of multiplicity p and a zero of g(z)− a

of multiplicity q. We denote by NL(r, a; f) the counting function of those a-
points of f and g where p > q ≥ 1, by Nf>s(r, a; g) (Ng>s(r, a; f)) the counting
functions of those a-points of f and g for which p > q = s(q > p = s), by

N
1)
E (r, a; f) the counting function of those a-points of f and g where p = q = 1

and by N
(2

E (r, a; f) the counting function of those a-points of f and g where
p = q ≥ 2, each point in these counting functions is counted only once. In

the same way we can define NL(r, a; g), N
1)
E (r, a; g), N

(2

E (r, a; g). We denote

by Nf≥k+1(r, a; f | g 6= a) (Ng≥k+1(r, a; g | f 6= a)) the reduced counting
functions of those a-points of f and g for which p ≥ k+1 and q = 0 (q ≥ k+1
and p = 0).

Definition 1.5 ([7]). Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g 6= b)
the counting function of those a-points of f , counted according to multiplicity,
which are not the b-points of g.

Definition 1.6 ([5, 6]). Let f , g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g.

Clearly,

N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let F , G be two non-constant meromorphic functions. Henceforth we shall
denote by H the following function.

(2.1) H =

(

F
′′

F ′

−
2F

′

F − 1

)

−

(

G
′′

G′

−
2G

′

G− 1

)

.

Lemma 2.1. Let Em)(1;F ) = Em)(1;G); F , G share ∞ IM and H 6≡ 0. Then

N(r,∞;H)

≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N∗(r,∞;F,G)

+NF≥m+1(r, 1;F | G 6= 1) +NG≥m+1(r, 1;G | F 6= 1)
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+NL(r, 1;F ) +NL(r, 1;G) +N0(r, 0;F
′

) +N0(r, 0;G
′

),

where N0(r, 0;F
′

) is the reduced counting function of those zeros of F
′

which

are not the zeros of F (F − 1) and N0(r, 0;G
′

) is similarly defined.

Proof. We can easily verify that possible poles of H occur at (i) multiple zeros
of F and G, (ii) poles of F and G with different multiplicities, (iii) the common
zeros of F −1 and G−1 with different multiplicities, (iii) zeros of F −1 (G−1)
which are not the zeros of G−1 (F −1), (iv) those 1-points of F (G) which are

not the 1-points of G (F ), (v) zeros of F
′

which are not the zeros of F (F − 1),

(vi) zeros of G
′

which are not zeros of G(G − 1). Since H has simple pole the
lemma follows from above. �

Lemma 2.2 ([19]). Let f be a non-constant meromorphic function and k be a

positive integer. Then

Np(r, 0; f
(k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.3 ([8]). If N(r, 0; f (k) | f 6= 0) denotes the counting function of

those zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted

according to its multiplicity, then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f)+N(r, 0; f |< k)+kN(r, 0; f |≥ k)+S(r, f).

Lemma 2.4 ([13]). Let f be a non-constant meromorphic function and let

R(f) =

n
∑

k=0

akf
k

m
∑

j=0

bjf j

be an irreducible rational function in f with constant coefficients {ak} and {bj}
where an 6= 0 and bm 6= 0. Then

T (r, R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.

Lemma 2.5 ([2]). Let f be a meromorphic function and P [f ] be a differential

polynomial. Then

m

(

r,
P [f ]

fd(P )

)

≤ (d(P )− d(P ))m

(

r,
1

f

)

+ S(r, f).

Lemma 2.6. Let f be a meromorphic function and P [f ] be a differential poly-

nomial. Then we have

N

(

r,∞;
P [f ]

fd(P )

)

≤ (ΓP − d(P )) N(r,∞; f) + (d(P )− d(P )) N(r, 0; f |≥ k+1)

+ µN(r, 0; f |≥ k + 1) + d(P )N(r, 0; f |≤ k) + S(r, f).
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Proof. Let z0 be a pole of f of order r, such that bj(z0) 6= 0,∞ : 1 ≤ j ≤ t.

Then it would be a pole of P [f ] of order at most rd(P ) + ΓP − d(P ). Since z0
is a pole of fd(P ) of order rd(P ), it follows that z0 would be a pole of P [f ]

fd(P )
of

order at most ΓP − d(P ). Next suppose z1 is a zero of f of order s(> k), such
that bj(z1) 6= 0,∞ : 1 ≤ j ≤ t. Clearly it would be a zero of Mj(f) of order
s.n0j + (s− 1)n1j + · · ·+ (s− k)nkj = s.d(Mj)− (ΓMj

− d(Mj)). Hence z1 be

a pole of
Mj [f ]

fd(P )
of order

s.d(P )− s.d(Mj) + (ΓMj
− d(Mj)) = s(d(P )− d(Mj)) + (ΓMj

− d(Mj)).

So z1 would be a pole of P [f ]

fd(P )
of order at most

max{s(d(P )− d(Mj)) + (ΓMj
− d(Mj)) : 1 ≤ j ≤ t)} = s(d(P )− d(P )) + µ.

If z1 is a zero of f of order s ≤ k, such that bj(z1) 6= 0,∞ : 1 ≤ j ≤ t, then it

would be a pole of P [f ]

fd(P )
of order sd(P ). Since the poles of P [f ]

fd(P )
comes from

the poles or zeros of f and poles or zeros of bj(z)’s only, it follows that

N

(

r,∞;
P [f ]

fd(P )

)

≤ (ΓP − d(P )) N(r,∞; f) + (d(P )− d(P )) N(r, 0; f |≥ k+1)

+ µ N(r, 0; f |≥ k + 1) + d(P )N(r, 0; f |≤ k) + S(r, f).
�

Lemma 2.7 ([3]). Let P [f ] be a differential polynomial. Then

T (r, P [f ]) ≤ ΓPT (r, f) + S(r, f).

Lemma 2.8. Let f be a non-constant meromorphic function and P [f ] be a

differential polynomial. Then S(r, P [f ]) can be replaced by S(r, f).

Proof. From Lemma 2.7 it is clear that T (r, P [f ]) = O(T (r, f)) and so the
lemma follows. �

Lemma 2.9. Let f be a non-constant meromorphic function and P [f ], Q[f ]
be two differential polynomials. Then

N(r, 0;P [f ]) ≤
d(P )− d(P )

d(Q)
m

(

r,
1

Q[f ]

)

+ (ΓP − d(P )) N(r,∞; f)

+ (d(P )− d(P )) N(r, 0; f |≥ k + 1) + µN(r, 0; f |≥ k + 1)

+ d(P )N(r, 0; f |≤ k) + d(P ) N(r, 0; f) + S(r, f).

Proof. For a fixed value of r, let E1 = {θ ∈ [0, 2π] :
∣

∣f(reiθ)
∣

∣ ≤ 1} and E2 be
its complement. Since by definition

k
∑

i=0

nij ≥ d(Q)
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for every j = 1, 2, . . . , l, it follows that on E1

∣

∣

∣

∣

Q[f ]

fd(Q)

∣

∣

∣

∣

≤

l
∑

j=1

|cj(z)|

k
∏

i=1

∣

∣

∣

∣

f (i)

f

∣

∣

∣

∣

nij

|f |

k∑

i=0
nij−d(Q)

≤

l
∑

j=1

|cj(z)|

k
∏

i=1

∣

∣

∣

∣

f (i)

f

∣

∣

∣

∣

nij

.

Also we note that
1

fd(Q)
=

Q[f ]

fd(Q)

1

Q[f ]
.

Since on E2,
1

|f(z)| < 1, we have

d(Q)m

(

r,
1

f

)

=
1

2π

∫

E1

log+
1

|f(reiθ)|
d(Q)

dθ +
1

2π

∫

E2

log+
1

|f(reiθ)|
d(Q)

dθ

≤
1

2π

l
∑

j=1





∫

E1

log+ |cj(z)| dθ +

k
∑

i=1

∫

E1

log+
∣

∣

∣

∣

f (i)

f

∣

∣

∣

∣

nij

dθ





+
1

2π

∫

E1

log+
∣

∣

∣

∣

1

Q[f(reiθ)]

∣

∣

∣

∣

dθ

≤
1

2π

2π
∫

0

log+
∣

∣

∣

∣

1

Q[f(reiθ)]

∣

∣

∣

∣

dθ + S(r, f) = m

(

r,
1

Q[f ]

)

+ S(r, f).

So using Lemmas 2.5 and 2.6 and the first fundamental theorem we get

N(r, 0;P [f ])

≤ N

(

r,∞;
fd(P )

P [f ]

)

+ d(P )N(r, 0; f)

≤ m

(

r,
P [f ]

fd(P )

)

+N

(

r,∞;
P [f ]

fd(P )

)

+ d(P )N(r, 0; f) + S(r, f)

≤ (d(P )− d(P ))m

(

r,
1

f

)

+ (ΓP − d(P )) N(r,∞; f)

+ (d(P )− d(P )) N(r, 0; f |≥ k + 1) + µN(r, 0; f |≥ k + 1)

+ d(P )N(r, 0; f |≤ k) + d(P ) N(r, 0; f) + S(r, f)

≤
(d(P )− d(P ))

d(Q)
m

(

r,
1

Q[f ]

)

+ (ΓP − d(P )) N(r,∞; f)

+ (d(P )− d(P )) N(r, 0; f |≥ k + 1) + µN(r, 0; f |≥ k + 1)

+ d(P )N(r, 0; f |≤ k) + d(P ) N(r, 0; f) + S(r, f).
�
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3. Proof of the theorem

Proof of Theorem 1.1. Let F = P [f ]
a

and G = Q[f ]
a

. Then F − 1 = P [f ]−a

a
,

G−1 = Q[f ]−a

a
. Since Em)(a, P [f ]) = Em)(a,Q[f ]), it follows that Em)(1, F ) =

Em)(1, G) except the zeros and poles of a(z). Now we consider the following
cases.

Case 1. Let H 6≡ 0.
Let z0 be a simple zero of F − 1. Then by a simple calculation we see that

z0 is a zero of H and hence

(3.1) N
1)
E (r, 1;F ) = N

1)
E (r, 1;G) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F ).

Using (3.1), Lemmas 2.1 and 2.8 and noting that N(r,∞;F ) = N(r,∞;G) +

S(r, f) = N(r,∞; f)+S(r, f) andNF>1(r, 1;G)+N(r, 1;G |≥ 2) = N
(2

E (r, 1;G)
+NL(r, 1;G) +NL(r, 1;F ) +NG≥m+1(r, 1;G | F 6= 1) + S(r, f), we get from
the second fundamental theorem that

T (r,G)

(3.2)

≤ N(r,∞;G) +N(r, 0;G) +N
1)
E (r, 1;G) +NF>1(r, 1;G) +N(r, 1;G |≥ 2)

−N0(r, 0;G
′

) + S(r,G)

≤ 2N(r,∞;F ) +N(r, 0;G) +N(r, 0;G |≥ 2) +N(r, 0;F |≥ 2) + 2NL(r, 1;F )

+ 2NL(r, 1;G) +NF≥m+1(r, 1;F | G 6= 1) + 2NG≥m+1(r, 1;G | F 6= 1)

+N
(2

E (r, 1;G) +N0(r, 0;F
′

) + S(r, f).

Using Lemmas 2.2 and 2.3 we see that

N(r, 0;G |≥ 2) + 2NG≥m+1(r, 1;G | F 6= 1) + 2NL(r, 1;G) +N
(2

E (r, 1;G)

(3.3)

≤ N(r, 0;G
′

| G 6= 0) +N(r, 0;G
′

) + S(r, f)

≤ 2N(r,∞; f) +N(r, 0;Q[f ]) +N2(r, 0;Q[f ]) + S(r, f)

and

N(r, 0;F |≥ 2) +NF≥m+1(r, 1;F | G 6= 1) + 2NL(r, 1;F ) +N0(r, 0;F
′

)

(3.4)

≤ N(r, 0;F
′

| F 6= 0) +N(r, 0;F
′

) + S(r, f)

≤ N(r, 0; (P [f ]/a)
′

| (P [f ]/a) 6= 0) +N(r, 0; (P [f ]/a)
′

) + S(r, f).

Using (3.3) and (3.4) in (3.1) we have

T (r,Q[f ]) ≤ 4N(r,∞; f) + 2N (r, 0;Q[f ])+N2 (r, 0;Q[f ])+N
(

r, 0; (P [f ]/a)
′

)

+N
(

r, 0; (P [f ]/a)
′

| (P [f ]/a) 6= 0
)

+ S(r, f).
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This contradicts (1.7).
Case 2. Let H ≡ 0.
On integration we get from

(3.5)
1

F − 1
≡

C

G− 1
+D,

where C, D are constants and C 6= 0. From (3.5) it is clear that F and G share
1 CM. We first assume that D 6= 0. Then by (3.5) we get

(3.6) N(r,∞; f) = S(r, f).

Clearly N(r,∞;G) = N(r,∞; f) + S(r, f) = S(r, f).
From (3.5) we get

(3.7)
1

F − 1
=

D
(

G− 1 + C
D

)

G− 1
.

Clearly from (3.7) we have

(3.8) N

(

r, 1−
C

D
;G

)

= N(r,∞;F ) = N(r,∞;G) = S(r, f).

If C
D

6= 1, by the second fundamental theorem, Lemma 2.8 and (3.8) we have

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N

(

r, 1−
C

D
;G

)

+ S(r,G)

≤ N(r, 0;G) + S(r, f) ≤ N2(r, 0;G) + S(r, f)

≤ T (r,G) + S(r, f).

So T (r,G) = N2(r, 0;G)+S(r, f) that is, T (r,Q[f ]) = N2 (r, 0;Q[f ])+S(r, f),
which contradicts (1.7).

If C
D

= 1 we get from (3.5)
(

F − 1−
1

C

)

G ≡ −
1

C
,(3.9)

i.e.,

P [f ]Q[f ]− aQ(1 + d) ≡ −da2

for a non zero constant d = 1
C

∈ C. From (3.9) it follows that

(3.10) N(r, 0; f |≥ k + 1) ≤ N(r, 0;Q[f ]) ≤ N(r, 0;G) ≤ N(r, 0; a) = S(r, f).

When P [f ] = b1f
n + b2f

n−1 + b3f
n−2 + · · ·+ bt−1f , we see from (3.9) that

1

fd(Q) (P [f ]− (1 + 1/C)a)
≡ −

C

a2
Q[f ]

fd(Q)
.

Hence by the first fundamental theorem, (3.6), (3.10), Lemmas 2.4, 2.5 and 2.6
we get that

(n+ d(Q))T (r, f)(3.11)
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= T

(

r, fd(Q)(P [f ]− (1 +
1

C
)a)

)

+ S(r, f)

= T

(

r,
1

fd(Q)(P [f ]− (1 + 1
C
)a)

)

+ S(r, f)

= T

(

r,
Q[f ]

fd(Q)

)

+ S(r, f)

≤ m

(

r,
Q[f ]

fd(Q)

)

+N

(

r,
Q[f ]

fd(Q)

)

+ S(r, f)

≤ (d(Q)− d(Q)) [T (r, f)− {N(r, 0; f |≤ k) +N(r, 0; f |≥ k + 1)}]

+ (d(Q)− d(Q))N(r, 0; f |≥ k + 1) + µ N(r, 0; f |≥ k + 1)

+ d(Q)N(r, 0; f |≤ k) + S(r, f)

≤ (d(Q)− d(Q))T (r, f) + d(Q)N(r, 0; f |≤ k) + S(r, f).

From (3.11) it follows that

nT (r, f) ≤ S(r, f),

which is absurd.
If P [f ] is a differential polynomial, then we consider the following two sub-

cases.
Subcase 2.1.

If C = −1, then from (3.5) we get FG ≡ 1, i.e., P [f ]Q[f ] ≡ a2. It is clear
that N(r,∞;P [f ]) = N(r,∞;Q[f ]) = S(r, f).

First we observe that since each monomial of Q[f ] contains a term involving
a power of f , we have N(r, 0; f) = S(r, f). So from the first fundamental

theorem, Lemma 2.5 and noting that m
(

r, 1
f

)

≤ 1
d(Q)m(r, 1

Q[f ] )) we have

T (r,Q[f ]) ≤ T (r, P [f ]) + S(r, f)

≤ m(r,
P [f ]

fd(P )
) + d(P )m(r, f) + S(r, f)

≤ (d(P )− d(P ))m(r,
1

f
) + d(P )m(r, f) + S(r, f)

≤
(d(P )− d(P ))

d(Q)
m(r,

1

Q[f ]
) + d(P ){m(r,

1

f
) +N(r, 0; f)}+ S(r, f)

≤
(d(P )− d(P ))

d(Q)
m(r,

1

Q[f ]
) +

d(P )

d(Q)
m(r,

1

Q[f ]
) + S(r, f),

which is a contradiction as d(Q) > 2d(P )− d(P ).
Subcase 2.2.

Next we assume C 6= −1.
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Then from (3.9) we have

N(r, 1 +
1

C
;F ) = N(r,∞;G) = S(r, f).

So again noticing the fact that each monomial of Q[f ] contains a term involving
a power of f , by the second fundamental theorem, Lemma 2.9 we get

T (r, P [f ])(3.12)

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1 +
1

C
;F ) + S(r, f)

≤ N(r, 0;P [f ]) + S(r, f)

≤
d(P )− d(P )

d(Q)
T (r, P [f ]) + S(r, f),

i.e.,

(3.13)
d(Q) + d(P )− d(P )

d(Q)
T (r, P [f ]) ≤ S(r, f).

Since by the given condition d(Q) > 2d(P )− d(P ) > d(P )− d(P ), (3.13) leads
to a contradiction.

Hence D = 0 and so G−1
F−1 = C or Q[f ]−a

P [f ]−a
= C. This proves the theorem. �

4. Concluding remark and an open question

From the statement of Theorem 1.1 one can see that when (ii) happens one
can not obtain the conclusion of Brück conjecture as a special case. We also
see from (3.6) that if N(r,∞; f) 6= S(r, f), then conclusion of Brück conjecture
is satisfied for any two arbitrary differential polynomials P [f ] and Q[f ] where
Q[f ] contains at least one derivative. The problem arises for those class of
meromorphic functions whose poles are relatively small in numbers such as en-
tire functions and thus poles have a vital contributions in this perspective. We
point out that the counter examples (1.9)-(1.13), which demonstrate the indis-
pensability of the conditions in (ii), have also been formed for entire functions.
So the following question still remain open for further investigations.

Can Brück type conclusion be solely obtained for two arbitrary differential

polynomials P [f ] and Q[f ] generated by the class of meromorphic functions

containing relatively small number of poles sharing a small function a ≡ a(z)
(6≡ 0,∞) IM ?
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