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SOME RESULTS ON THE QUESTIONS OF KIT-WING YU

Sujoy Majumder

Abstract. The paper deals with the problem of meromorphic functions
sharing a small function with its differential polynomials and improves
the results of Liu and Gu [9], Lahiri and Sarkar [8], Zhang [13] and Zhang
and Yang [14] and also answer some open questions posed by Kit-Wing Yu
[16]. In this paper we provide some examples to show that the conditions
in our results are the best possible.

1. Introduction, definition and results

In this paper by meromorphic functions we will always mean meromorphic
functions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and
g − a have the same zeros with the same multiplicities. Similarly, we say that
f and g share a IM, provided that f −a and g−a have the same zeros ignoring
multiplicities. In addition we say that f and g share ∞ CM, if 1/f and 1/g
share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

We adopt the standard notations in Nevanlinna’s value distribution theory
of meromorphic functions such as the characteristic function T (r, f), the count-
ing function of the poles N(r,∞; f) and the proximity function m(r,∞; f) (see
[10]). For a non-constant meromorphic function f we denote by S(r, f) any
quantity satisfying S(r, f) = o(T (r, f)) as r → ∞, outside of a possible ex-
ceptional set of finite linear measure. Let k ∈ N and a ∈ C ∪ {∞}. We use
N(k(r, a; f) to denote the counting function of a-points of f with multiplicity
≥ k, Nk)(r, a; f) to denote the counting function of a-points of f with multi-

plicity < k. Similarly N (k(r, a; f) and Nk)(r, a; f) are their reduced functions
respectively.

For a ∈ C ∪ {∞} and p ∈ N we denote by Np(r, a; f) the sum

N(r, a; f) +N (2(r, a; f) + · · ·+N (p(r, a; f).

Clearly N1(r, a; f) = N(r, a; f).
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For a ∈ C ∪ {∞} and p ∈ N, we put

δp(a; f) = 1− lim sup
r−→∞

Np(r, a; f)

T (r, f)
.

Clearly

0 ≤ δ(a; f) ≤ δp(a; f) ≤ δp−1(a; f) ≤ · · · ≤ δ2(a; f) ≤ δ1(a; f) = Θ(a; f).

Let a, b ∈ C ∪ {∞} and p ∈ N. We denote by N (p(r, a; f | g = b) (N (p(r, a; f |
g 6= b)) the reduced counting function of those a-points of f with multiplicities
≥ p, which are the b-points (not the b-points) of g.

Let f , g share a value a IM. We denote by N∗(r, a; f, g) the reduced counting
function of those a-points of f whose multiplicities differ from the multiplicities
of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f).
A meromorphic function a(z) is called a small function with respect to f ,

provided that T (r, a) = S(r, f).
Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z) be

a small function with respect to f(z) and g(z). We say that f(z) and g(z)
share a(z) CM (counting multiplicities) if f(z)− a(z) and g(z)− a(z) have the
same zeros with the same multiplicities and we say that f(z), g(z) share a(z)
IM (ignoring multiplicities) if we do not consider the multiplicities.

To the knowledge of the author perhaps Rubel and Yang [12] were the first
authors to study the entire functions that share values with their derivatives
and they proved the following result.

Theorem A. If a non-constant entire function f share two distinct finite

values CM with f
′

, then f ≡ f
′

.

E. Mues and N. Steinmetz [11] have shown that “CM” can be replaced by
“IM” in Theorem A (another proof of this result for nonzero shared values is
in [2]).

In 1983, Gundersen [3] improved Theorem A and obtained the following
result.

Theorem B. Let f be a non-constant meromorphic function, a and b be two

distinct finite values. If f and f
′

share the values a and b IM, then f ≡ f
′

.

In the aspect of one CM value, R. Brück [1] posed the following question:

Question. What results can be obtained if one assumes that f and f
′

share
only one value CM plus some growth condition?

In this direction Brück [1] proposed the following conjecture:

Conjecture 1.1. Let f be a non-constant entire function. Suppose

ρ1(f) := lim sup
r→∞

log logT (r, f)

log r
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is not a positive integer or infinite. If f and f
′

share one finite value a CM,

then

f
′

− a

f − a
= c

for some non-zero constant c.

The case that a = 0 and that N(r, 0; f
′

) = S(r, f) had been proved by Brück
[1] while the case that f is of finite order had been proved by Gundersen-Yang
[4]. However, the corresponding conjecture for meromorphic functions fails in
general (see [4]).

In 2003, Yu [16] considered the case that a is a small function and obtained
the following results.

Theorem C. Let f be a non-constant entire function, let k ∈ N and let a be a

small meromorphic function of f such that a(z) 6≡ 0,∞. If f − a and f (k) − a
share the value 0 CM and δ(0; f) > 3

4 , then f ≡ f (k).

Theorem D. Let f be a non-constant non-entire meromorphic function, let

k ∈ N and let a be a small meromorphic function of f such that a(z) 6≡ 0,∞,

f and a do not have any common pole. If f − a and f (k) − a share the value 0
CM and 4 δ(0; f) + 2(8 + k) Θ(∞; f) > 19 + 2k, then f ≡ f (k).

In the same paper Yu [16] posed the following questions.

Question 1. Can a CM shared value be replaced by an IM shared value in
Theorem C?

Question 2. Is the condition δ(0; f) > 3
4 sharp in Theorem C?

Question 3. Is the condition 4 δ(0; f) + 2(8 + k) Θ(∞; f) > 19 + 2k sharp in
Theorem D?

Question 4. Can the condition “f and a do not have any common pole” be
deleted in Theorem D?

In 2004, Liu and Gu [9] obtained the following results.

Theorem E. Let k ∈ N and let f be a non-constant meromorphic function

and let a be a small meromorphic function of f such that a(z) 6≡ 0,∞. If f − a
and f (k) − a share the value 0 CM and f (k) and a do not have any common

pole of same multiplicity and 2 δ(0; f) + 4 Θ(∞; f) > 5, then f ≡ f (k).

Theorem F. Let k ∈ N and let f be a non-constant entire function and let

a be a small meromorphic function of f such that a(z) 6≡ 0,∞. If f − a and

f (k) − a share the value 0 CM and δ(0; f) > 1
2 , then f ≡ f (k).

In 2001 an idea of gradation of sharing of values was introduced in [5, 6]
which measures how close a shared value is to be shared CM or to be shared
IM. This notion is known as weighted sharing and is defined as follows.
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Definition 1.1 ([5, 6]). Let k be a nonnegative integer or infinity. For a ∈
C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f and g share the value a with weight k.

The definition implies that if f and g share a value a with weight k, then z0
is an a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g
with multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k)
if and only if it is an a-point of g with multiplicity n (> k), where m is not
necessarily equal to n.

f and g share (a, k) means that f , g share the value a with weight k. Clearly
if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or
(a,∞), respectively.

Lahiri and Sarkar [8] improved Theorem E with weighted shared values and
obtained the following theorem.

Theorem G. Let f(z) be a non-constant meromorphic function, k ∈ N, and

let a be a small meromorphic function of f such that a(z) 6≡ 0,∞. If

(i) a(z) has no zero (pole) which is also a zero (pole) of f or f (k) with the

same multiplicity,

(ii) f − a and f (k) − a share (0, 2),
(iii) 2 δ2+k(0; f) + (4 + k) Θ(∞; f) > 5 + k,

then f ≡ f (k).

In 2005, Zhang [13] obtained the following result which is an improvement
and complement of Theorem G.

Theorem H. Let f be a non-constant meromorphic function, k ∈ N and

l ∈ N ∪ {0}. Also let a ≡ a(z) be a small meromorphic function of f such that

a(z) 6≡ 0,∞. Suppose that f − a and f (k)− a share (0, l). Then f ≡ f (k) if one

of the following conditions is satisfied,

(i) l ≥ 2 and

(3 + k) Θ(∞; f) + 2 δ2+k(0; f) > k + 4;

(ii) l = 1 and

(4 + k) Θ(∞; f) + 3 δ2+k(0; f) > k + 6;

(iii) l = 0 and

(6 + 2k) Θ(∞; f) + 5 δ2+k(0; f) > 2k + 10.

It is natural to ask what happens if f (k) is replaced by a differential poly-
nomial

(1.1) L(f) = f (k) + ak−1f
(k−1) + · · ·+ a0f
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in the above Theorems E, F, where aj (j = 0, 1, . . . , k − 1) are polynomials.
Corresponding to this question Zhang and Yang [14] obtained the following
results.

Theorem I. Let k ∈ N, f be a non-constant meromorphic function, and let a
be a small meromorphic function such that a(z) 6≡ 0,∞. Suppose that L(f) is
defined by (1.1). If f − a and L(f)− a share the value 0 IM and

5 δ(0; f) + (2k + 6) Θ(∞; f) > 2k + 10,

then f ≡ L(f).

Theorem J. Let k ∈ N, f be a non-constant meromorphic function, and let a
be a small meromorphic function such that a(z) 6≡ 0,∞. Suppose that L(f) is
defined by (1.1). If f − a and L(f)− a share the value 0 CM and

2 δ(0; f) + 3 Θ(∞; f) > 4,

then f ≡ L(f).

The main purpose of this paper is to improve Theorems F-J. Further in this
paper we provide some examples to show that the conditions in our results are
the best possible.

Henceforth throughout this paper we use the following notation.

(1.2) L1(f) = akf
(k) + ak−1f

(k−1) + · · ·+ a0f,

where aj (j = 0, 1, . . . , k) are small meromorphic functions of f such that
ak(z) 6≡ 0.

The following theorems are the main results of the paper.

Theorem 1.1. Let f be a non-constant meromorphic function and k ∈ N,

l ∈ N ∪ {0}. Also let a ≡ a(z)(6≡ 0,∞) be a meromorphic small function.

Suppose that f − a and L1(f)− a share (0, l), where L1(f) is defined by (1.2).
If l(≥ 1) and

l + 1

l
Θ(∞; f) +

1

l
Θ(0; f) + δk+1(0; f) >

l + 2

l
(1.3)

or l = 0 and

(k + 1) Θ(∞; f) + Θ(0; f) + δk(0; f) > k + 2,(1.4)

then f ≡ L1(f).

Corollary 1.1. Let f be a non-constant meromorphic function and k ∈ N.

Also let a ≡ a(z)(6≡ 0,∞) be a meromorphic small function. Suppose that f−a
and L1(f)− a share 0 CM, where L1(f) is defined by (1.2). If

Θ(∞; f) + δk+1(0; f) > 1,

then f ≡ L1(f).
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Remark 1.1. Since 2 δ2+k(0; f) + (k + 4) Θ(∞; f) > k + 5 or equivalently

3

2
Θ(∞; f) +

1

2
Θ(0; f) + δk+1(0; f)

> 2 + (k +
5

2
) (1−Θ(∞; f)) + (δk+1(0; f)− δk+2(0; f))

+
1

2
(Θ(0; f)− δk+2(0; f)) +

1

2
(1− δk+2(0; f)),

Theorem 1.1 improves Theorem G.

Remark 1.2. Also Theorem 1.1 improves Theorem H.

Remark 1.3. Since 5 δ(0; f) + (2k + 6) Θ(∞; f) > 2k + 10 or equivalently

(k + 1) Θ(∞; f) + Θ(0; f) + δk(0; f)

> k + 2 + (k + 5) (1−Θ(∞; f)) + 3 (1− δ(0; f))

+ (Θ(0; f)− δ(0; f)) + (δk(0; f)− δ(0; f)),

Theorem 1.1 improves Theorem I.

Remark 1.4. Since 2 δ(0; f) + 3 Θ(∞; f) > 4 or equivalently

Θ(∞; f) + δk+1(0; f) > 1 + 2 (1−Θ(∞; f)) + (1− δ(0; f))

+ (δk+1(0; f)− δ(0; f)),

Corollary 1.1 improves Theorem J.

Corollary 1.2. Let f be a non-constant entire function and k ∈ N. Also let

a ≡ a(z)(6≡ 0,∞) be a meromorphic small function. Suppose that f − a and

L1(f)− a share 0 CM, where L1(f) is defined by (1.2). If

δk+1(0; f) > 0,

then f ≡ L1(f).

Remark 1.5. Clearly Corollary 1.2 improves Theorem F.

Remark 1.6. It is easy to see that the condition

Θ(∞; f) + δk+1(0; f) > 1

in Corollary 1.1 is sharp by the following examples.

Example 1.1. Let

f(z) =
ez

eez − 1

and L1(f) = (−e−z)f
′

+(e−z − 1)f . Then f and L1(f) share the value ez CM
and

Θ(∞; f) + δ2(0; f) = 0 + 1 = 1,

but f 6≡ L1(f).
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Example 1.2. Let

f(z) =
z

e−z + 1
.

Then f and f
′

share the value 1 CM and Θ(∞; f) + δ2(0; f) = 0 + 1 = 1, but

f 6≡ f
′

.

Example 1.3. Let

f(z) =
z + 1

1 + e−z
.

Then f and f
′

share the value 1 CM and Θ(∞; f) + δ2(0; f) = 0 + 1 = 1, but

f 6≡ f
′

.

Example 1.4. Let

f(z) = ee
z

+ 1,

where a(z) = 1
1−e−z . Then f and f

′

share the value a CM and Θ(∞; f) +

δ2(0; f) = 1 + 0 = 1, but f 6≡ f
′

.

Remark 1.7. It is easy to see that the condition

δk+1(0; f) > 0

in Corollary 1.2 is sharp by the following examples.

Example 1.5. Let

f(z) = ec1z + c2,

where c1, c2 ∈ C \ {0} such that c1 6= 1. Then f and f
′

share the value c3 CM,

where c1c2 = c3(c1 − 1) and δ2(0; f) = 0, but f 6≡ f
′

.

Example 1.6. Let

f(z) = e3z +
2z

3
+

2

9
.

Note that

f
′

− z = 3(f − z).

Then f − z and f
′

− z share 0 CM and δ2(0; f) = 0, but f 6≡ f
′

.

Theorem 1.2. Let f be a non-constant meromorphic function and k ∈ N.

Also let a ≡ a(z)(6≡ 0,∞) be a meromorphic small function. Suppose that f−a
and L1(f)− a share 0 IM, where L1(f) is defined by (1.2). If

(1.5) (k − 1) Θ(∞; f) + δ2(∞; f) + δk(0; f) + δk+1(0; f) > k + 1,

then f ≡ L1(f).

Remark 1.8. It is easy to see that the condition

(k − 1) Θ(∞; f) + δ2(∞; f) + δk(0; f) + δk+1(0; f) > k + 1

in Theorem 1.2 is sharp by the following example.
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Example 1.7. Let

f(z) =
2A

1−Be−2z
,

where A and B are nonzero constants.
Note that

N(r,∞; f) ∼ T (r, f)

and so δ2(∞; f) = 0. Also

Θ(0; f) = δ2(0; f) = 1.

Then f and f
′

share the value A IM and

δ2(∞; f) + Θ(0; f) + δ2(0; f) = 2,

but f 6≡ f
′

.

2. Lemmas

Lemma 2.1 ([7]). If N(r, 0; f (k) | f 6= 0) denotes the counting function of

those zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted

according to its multiplicity, then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) +Nk)(r, 0; f) + kN (k(r, 0; f) + S(r, f).

Lemma 2.2 ([15]). Let f be a non-constant meromorphic function and let

an(z) (6≡ 0), an−1(z),. . . , a0(z) be meromorphic functions such that T (r, ai(z))
= S(r, f) for i = 0, 1, 2, . . . , n. Then

T (r, anf
n + an−1f

n−1 + · · ·+ a1f + a0) = nT (r, f) + S(r, f).

3. Proofs of the theorem

Proof of Theorem 1.1. Let F = f

a
and G = L1(f)

a
, where L1(f) is defined by

(1.2). Then F −1 = f−a
a

and G−1 = L1(f)−a

a
. Since f −a and L1(f)−a share

(0, l), it follows that F and G share (1, l) except the zeros and poles of a(z).
Suppose F 6≡ G.
Now we consider the following cases.

Case 1. Let l ≥ 1.

H =
1

F

(

G
′

G− 1
−

F
′

F − 1

)

=
G

F

(

G
′

G− 1
−

G
′

G

)

−

(

F
′

F − 1
−

F
′

F

)

.(3.1)
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Now from Nevanlinna’s fundamental estimate of the logarithmic derivative we
obtain

m(r,∞;
L1(f)

f
) = m(r,∞;

k
∑

j=0

aj
f (j)

f
)

≤

k
∑

j=0

m(r,∞; aj
f (j)

f
) +O(1)

≤

k
∑

j=0

m(r,∞;
f (j)

f
) + S(r, f) = S(r, f),

where we define f (0)(z) = f(z).
Suppose H ≡ 0. Then from (3.1) we find that

(3.2) G− 1 ≡ c(F − 1),

where c ∈ C \ {0}.
Let z11 be a pole of f(z) with multiplicity p11 ≥ 1 such that ai(z11), a(z11) 6=

0,∞, where i = 0, 1, 2, . . . , k. Clearly z11 is a pole of G − 1 with multiplicity
p11 + k and a pole of F − 1 with multiplicity p11. Now from (3.2) we see that
p11 + k = p11, which is impossible. Hence either ai(z11) = 0,∞ (for at least
one i ∈ {0, 1, 2, . . . , k}) or a(z11) = 0,∞. Therefore

N(r,∞; f) = S(r, f)

and so

Θ(∞; f) = 1.

From (1.3) we know

(3.3)
1

l
Θ(0; f) + δk+1(0; f) >

1

l
.

Now (3.3) yields δk+1(0; f) > 0.
If c = 1, then F ≡ G, a contradiction. Therefore c 6= 1 and so

(3.4)
1

F
=

1

1− c

(G

F
− c
)

.

It can be easily calculated that the possible poles of L1(f)
f

occur at (i) poles of

f and (ii) zeros of f .
Let z∗11 be a zero of f with multiplicity p∗11 ≥ k + 1(p∗11 ≤ k) such that

a(z∗11), aj(z
∗
11) 6= 0,∞, where j = 0, 1, . . . , k. Then z∗11 will be a pole of L1(f)

f

with multiplicity k(p∗11). Hence

N(r,∞;
L1(f)

f
) ≤ k N(r,∞; f) +Nk+1)(r, 0; f) + k N (k+1(r, 0; f) + S(r, f)

≤ Nk+1)(r, 0; f) + (k + 1) N (k+1(r, 0; f) + S(r, f)

= N(r, 0; f) +N (2(r, 0; f) + · · ·+N (k+1(r, 0; f) + S(r, f)
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= Nk+1(r, 0; f) + S(r, f).

Now from (3.4) it is clear that

T (r, f) = T (r, F ) + S(r, f) ≤ T (r,
G

F
) + S(r, f)

= T (r,
L1(f)

f
) + S(r, f)

≤ N(r,∞;
L1(f)

f
) +m(r,∞;

L1(f)

f
) + S(r, f)

≤ Nk+1(r, 0; f) + S(r, f)

≤ (1 − δk+1(0; f) + ε)T (r, f) + S(r, f),

which is a contradiction as δk+1(0; f) > 0. Hence H 6≡ 0.
Now from the fundamental estimate of logarithmic derivative it follows that

m(r,H) = S(r, f).(3.5)

If z0 is a pole of f with multiplicity p ≥ 1 such that a(z0), aj(z0) 6= 0,∞, where
j = 0, 1, . . . , k, then

H(z) = O((z − z0)
p−1).(3.6)

Let z1 be a zero of f with multiplicity q ≥ k+1(q ≤ k) such that a(z1), aj(z1) 6=
0,∞, where j = 0, 1, . . . , k. Then z1 will be a pole of H with multiplicity
k + 1(q).

Also if z2 is a common zero of F − 1 and G− 1 with different multiplicities,
then z2 will be a pole of H . Thus

N(r,∞;H) ≤ N∗(r, 1;F,G) +Nk+1(r, 0; f) + S(r, f)(3.7)

≤ N (l+1(r, 1;F ) +Nk+1(r, 0; f) + S(r, f).

Then from (3.1), (3.5) and (3.7) we get

N(r,∞; f)−N(r,∞; f)(3.8)

≤ N(r, 0;H) + S(r, f)

≤ T (r,
1

H
)−m(r,

1

H
) + S(r, f)

≤ T (r,H)−m(r,
1

H
) + S(r, f)

= N(r,∞;H) +m(r,H)−m(r,
1

H
) + S(r, f)

≤ N (l+1(r, 1;F ) +Nk+1(r, 0; f)−m(r,
1

H
) + S(r, f).

On the other hand it follows from (3.1) that

m(r, f) ≤ m(r,
1

H
) + S(r, f).(3.9)



SOME RESULTS ON THE QUESTIONS OF KIT-WING YU 305

Now Lemma 2.1, (3.8) and (3.9) yield

T (r, f) ≤ N (l+1(r, 1;F ) +Nk+1(r, 0; f) +N(r,∞; f) + S(r, f)

(3.10)

≤
1

l
N(r, 0;F

′

|F 6= 0) +Nk+1(r, 0; f) +N(r,∞; f) + S(r, f)

≤
1

l
{N(r, 0;F ) +N(r,∞;F )} +Nk+1(r, 0; f) +N(r,∞; f) + S(r, f)

≤
1

l
{N(r, 0; f) +N(r,∞; f)}+Nk+1(r, 0; f) +N(r,∞; f) + S(r, f)

≤
(2l+ 2

l
−

l + 1

l
Θ(∞; f)−

1

l
Θ(0; f)− δk+1(0; f) + ε

)

T (r, f)

+ S(r, f),

i.e.,

(3.11)
(

−
l + 2

l
+
l + 1

l
Θ(∞; f)+

1

l
Θ(0; f)+δk+1(0; f)−ε

)

T (r, f) ≤ S(r, f).

Thus if (1.3) holds, then we arrive at a contradiction from (3.11).
Hence F ≡ G, i.e., f ≡ L1(f).

Case 2. Let l = 0.
Note that

N(r, 1;F ) ≤ N(r, 1;
G

F
) + S(r, f)(3.12)

≤ T (r,
G

F
) + S(r, f)

≤ N(r,∞;
G

F
) +m(r,∞;

G

F
) + S(r, f)

= N(r,∞;
L1(f)

f
) +m(r,∞;

L1(f)

f
) + S(r, f)

≤ k N(r,∞; f) +Nk(r, 0; f) + S(r, f).

Now using (3.12), we get from the second fundamental theorem that

T (r, f) = T (r, F ) + S(r, f)

(3.13)

≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1;F ) + S(r, F )

≤ (k + 1) N(r,∞; f) +N(r, 0; f) +Nk(r, 0; f) + S(r, f)

≤
(

k + 3− (k + 1) Θ(∞; f)−Θ(0; f)− δk(0; f) + ε
)

T (r, f) + S(r, f),

i.e.,

(3.14)
(

− k− 2+ (k+1) Θ(∞; f) +Θ(0; f) + δk(0; f)− ε
)

T (r, f) ≤ S(r, f).

Thus if (1.4) holds, then we arrive at a contradiction from (3.14).
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Hence F ≡ G, i.e., f ≡ L1(f).
This completes the proof. �

Proof of Theorem 1.2. Let F = f

a
and G = L1(f)

a
, where L1(f) is defined by

(1.2). Then F −1 = f−a

a
and G−1 = L1(f)−a

a
. Since f −a and L1(f)−a share

0 IM, it follows that F and G share 1 IM except the zeros and poles of a(z).
Suppose F 6≡ G.
Let

Φ =
1

F

(

G
′

G− 1
− (k + 1)

F
′

F − 1

)

=
G

F

(

G
′

G− 1
−

G
′

G

)

− (k + 1)

(

F
′

F − 1
−

F
′

F

)

.(3.15)

Suppose Φ ≡ 0. Then from (3.15) we find that

G− 1 ≡ d(F − 1)k+1,(3.16)

where d ∈ C \ {0}.
Let z12 be a pole of f(z) with multiplicity p12 ≥ 1 such that ai(z12), a(z12) 6=

0,∞, where i = 0, 1, 2, . . . , k (otherwise the counting function of those poles
of f(z) which are the zeros or poles of ai(z), a(z) is equal to S(r, f)). Clearly
z12 is a pole of G− 1 with multiplicity p12 + k and a pole of (F − 1)k+1 with
multiplicity (k + 1)p12. Now from (3.16) we see that p12 + k = (k + 1)p12. If
p12 ≥ 2, then we arrive at a contradiction and so

N(2(r,∞; f) = S(r, f).(3.17)

Also from (1.5) we know

(3.18) (k − 1) Θ(∞; f) + δ2(∞; f) + δk(0; f) + δk+1(0; f) > k + 1.

Now (3.18) yields

(3.19) (k − 1) Θ(∞; f) + δ2(∞; f) + δk(0; f) > 1.

By Lemma 2.2 we get from (3.16) that

(k + 1) T (r, f)

= (k + 1) T (r, F ) + S(r, f)

≤ T (r, (F − 1)k+1) + S(r, f)

≤ T (r,G) + S(r, f)

≤ T (r,
G

F
) + T (r, F ) + S(r, f)

≤ N(r,∞;
L1(f)

f
) +m(r,∞;

L1(f)

f
) + T (r, f) + S(r, f)

≤ k N(r,∞; f) +Nk(r, 0; f) + T (r, f) + S(r, f)

≤ (k − 1) N(r,∞; f) +N2(r,∞; f) +Nk(r, 0; f) + T (r, f) + S(r, f)
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≤ (k + 2− (k − 1) Θ(∞; f)− δ2(∞; f)− δk(0; f) + ε)T (r, f) + S(r, f),

which contradicts (3.19). Hence Φ 6≡ 0.
Now from the fundamental estimate of logarithmic derivative it follows that

m(r,Φ) = S(r, f).(3.20)

If zp is a pole of f with multiplicity p ≥ 1 such that a(zp), aj(zp) 6= 0,∞, where
j = 0, 1, . . . , k, then

Φ(z) =

{

O((z − zp)), if p = 1
O((z − zp)

p−1), if p ≥ 2.
(3.21)

Thus from (3.15) we get

N(r,∞; Φ) ≤ N(r, 1;F ) +Nk+1(r, 0; f) + S(r, f)

(3.22)

≤ N(r, 0;
F −G

F
) +Nk+1(r, 0; f) + S(r, f)

≤ T (r,
G

F
) +Nk+1(r, 0; f) + S(r, f)

≤ N(r,∞;
L1(f)

f
) +m(r,∞;

L1(f)

f
) +Nk+1(r, 0; f) + S(r, f)

≤ k N(r,∞; f) +Nk(r, 0; f) +Nk+1(r, 0; f) + S(r, f).

Then from (3.15), (3.20) and (3.22) we get

N(r,∞; f)−N (2(r,∞; f) ≤ N(r, 0; Φ) + S(r, f)

(3.23)

≤ T (r,
1

Φ
)−m(r,

1

Φ
) + S(r, f)

≤ T (r,Φ)−m(r,
1

Φ
) + S(r, f)

= N(r,∞; Φ) +m(r,Φ)−m(r,
1

Φ
) + S(r, f)

≤ k N(r,∞; f) +Nk(r, 0; f) +Nk+1(r, 0; f)

−m(r,
1

Φ
) + S(r, f).

On the other hand it follows from (3.15) that

m(r, f) ≤ m(r,
1

Φ
) + S(r, f).(3.24)

Now (3.23) and (3.24) yield

T (r, f)

(3.25)

≤ (k − 1) N(r,∞; f) +N2(r,∞; f) +Nk(r, 0; f) +Nk+1(r, 0; f) + S(r, f)
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≤
(

k + 2− (k − 1) Θ(∞; f)− δ2(∞; f)− δk(0; f)− δk+1(0; f) + ε
)

T (r, f)

+ S(r, f),

i.e.,

(

− k − 1 + (k − 1) Θ(∞; f) + δ2(∞; f) + δk(0; f) + δk+1(0; f)− ε
)

T (r, f)

≤ S(r, f),

which contradicts (3.18). Hence F ≡ G, i.e., f ≡ L1(f).
This completes the proof. �
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