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CERTAIN SEQUENCE SPACES AND RELATED DUALS

WITH RESPECT TO THE b-METRIC

Uğur Kadak

Abstract. The aim of this paper is to present the classical sets of se-
quences and related matrix transformations with respect to the b-metric.
Also, we introduce the relationships between these sets and their classical
forms with corresponding properties including convergence and complete-
ness. Further we determine the duals of the new spaces and characterize
matrix transformations on them into the sets of b-bounded, b-convergent
and b-null sequences.

1. Introduction

By ω, we denote the space of all real valued sequences and any subspace of
w is called a sequence space. We define the classical sets ℓb∞, cb, cb0 and ℓbp of
all, bounded, convergent, null and absolutely p-summable sequences over the
real field R with respect to the b-metric which correspond to the classical sets
ℓ∞, c, c0 and ℓp over the real field R, respectively. That is to say that

ℓb∞ :=

{

x = (xk) ∈ ω : sup
k∈N

{

ρ(xk, 0)
}

< ∞

}

,

cb :=

{

x = (xk) ∈ ω : ∃l ∈ R ∋ blim
k→∞

ρ(xk, l) = 0

}

,

cb0 :=

{

x = (xk) ∈ ω : blim
k→∞

ρ(xk, 0) = 0

}

,

ℓbp :=

{

x = (xk) ∈ ω :

∞
∑

k=0

ρ(xk, 0)
p < ∞

}

, (0 < p < ∞)

where the distance function ρ is a b-metric for s ≥ 1. One can show that ℓb∞,
cb and cb0 are b-complete metric spaces with ρ∞ defined by

ρ∞(x, y) := sup
k∈N

{

ρ(xk, yk)
}

.
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Also, the set ℓbp of absolutely p-summable sequence is a b-complete with ρp
defined by

ρp(x, y) :=

{

∞
∑

k=0

ρ(xk, yk)
p

}1/p

, (p ≥ 1)

where x = (xk), y = (yk) are the elements of the set ℓbp. Secondly, we construct

the sets bsb, csb and csb0 of all bounded, convergent, null series by using b-metric
ρ, as follows:

bsb :=

{

x = (xk) ∈ ω : sup
n∈N

ρ

(

n
∑

k=0

xk, 0

)

< ∞

}

or

:=

{

x = (xk) ∈ ω :

( n
∑

k=0

xk

)

∈ ℓb∞

}

,

csb :=

{

x = (xk) ∈ ω : ∃ℓ ∈ R ∋ blim
n→∞

ρ

(

n
∑

k=0

xk, ℓ

)

= 0

}

or

:=

{

x = (xk) ∈ ω :

( n
∑

k=0

xk

)

∈ cb

}

,

csb0 :=

{

x = (xk) ∈ ω : blim
n→∞

ρ

(

n
∑

k=0

xk, 0

)

= 0

}

or

:=

{

x = (xk) ∈ ω :

( n
∑

k=0

xk

)

∈ cb0

}

.

One can conclude that bsb, csb and csb0 are b-complete metric spaces with
corresponding b-metric defined by

Db
∞(x, y) := sup

n∈N

{

ρ

( n
∑

k=0

xk,

n
∑

k=0

yk

)}

, (s ≥ 1)

where x = (xk), y = (yk) are the elements of the sets bsb, csb and csb0. Finally,
we introduce the sets bvb, bvbp and bvb∞ of p-bounded variation of sequences by
using b-metric, as follows:

bvb :=

{

x = (xk) ∈ ω :
∑

k

ρ [(∆x)′k, 0] < ∞

}

,

ρ∆(x, y) :=

∞
∑

k=0

{

ρ
[

(∆x)′k, (∆y)′k
]

}

,

bvbp :=

{

x = (xk) ∈ ω :

∞
∑

k=0

ρ [(∆x)k, 0]
p
< ∞

}

,
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ρ∆p (x, y) :=

{ ∞
∑

k=0

ρ
[

(∆x)k, (∆y)k
]p

}1/p

, (p ≥ 1).

bvb∞ :=

{

x = (xk) ∈ ω : sup
k∈N

ρ [(∆x)k, 0] < ∞

}

,

ρ∆∞(x, y) := sup
k∈N

{

ρ
[

(∆x)k, (∆y)k
]

}

.

One can easily see that bvb, bvbp and bvb∞ are b-complete metric spaces with

b-metrics ρ∆, ρ
∆
p and ρ∆∞, respectively where (∆x)′k = xk − xk−1;x−1 = 0 and

(∆x)k = xk − xk+1 for all k ∈ N.
Recently, many researchers have investigated on different contractive condi-

tions in complete metric spaces with respect to a partial order and determined
many fixed point results. For more details on fixed point results, especially
comparison of different contractive conditions and related properties in ordered
metric spaces we refer the reader to [1, 2, 7, 8, 18, 19, 20, 22]. Khamsi-Hussain
[15] and Hussain et al. [10] studied the topology introduced by b-metric. For
more results see also [6, 14, 17].

Furthermore, Kadak and Ozluk [13] have introduced the characterization of
matrix transformations between some classical sets of sequences with respect
to partial metric. Also Kadak [11] and Kadak and Efe [12] have determined
the duals and matrix transformations over the non-Newtonian complex field.

The main focus of this work is to extend classical sequence spaces and related
duals defined earlier to the sequence spaces with respect to b-metric and to
characterize matrix transformations on them.

2. Preliminaries, bacground and notation

The concept of a b-metric space was introduced by Czerwik in [5]. After
that, several results about the existence of a fixed point for single-valued and
multi-valued operators in b-metric spaces have been given (see [4, 9, 23, 24]).
Pacurar [21] introduced some results on sequences of almost contractions and
fixed points in b-metric spaces. Consistent with [5] and [25], the following
definitions and results will be needed in the sequel.

Definition 2.1 ([24]). Let X be a (nonempty) set and s ≥ 1 be a given real
number. A function ρ : X ×X → [0,∞) is a b-metric if, for all x, y, z ∈ X , the
following conditions are satisfied:

(b1) ρ(x, y) = 0 if and only if x = y,
(b2) ρ(x, y) = ρ(y, x),
(b3) ρ(x, z) ≤ s[ρ(x, y) + ρ(y, z)].

The pair (X, ρ) is called a b-metric space.

It is pointed out that the class of b-metric spaces is effectively larger than of
metric spaces, since a b-metric is a metric if and only if s = 1.
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Example 2.2 ([24]). Let (X, d) be a metric space, and ρ(x, y) = d(x, y)p,
where p ≥ 1 is a real number. Then ρ is a b-metric with s = 2p−1.

However, (X, ρ) is not necessarily a metric space. For example, if X = R

is the set of real numbers and d(x, y) = |x − y| is the usual Euclidean metric,
then ρ(x, y) = (x− y)2 is a b-metric, denoted by Euclidean b-metric on R with
s = 2, but it is not a metric on R.

Definition 2.3 ([4]). Let (X, ρ) be a b-metric space. Then a sequence {xn} in
X is called:

(a) b-convergent if and only if there exists ℓ ∈ X such that ρ(xn, ℓ) → 0,

as n → ∞. In this case, we write blimn→∞ xn = ℓ.
(b) b-Cauchy if and only if ρ(xn, xm) → 0 as n,m → ∞.

Definition 2.4 ([4]). In a b-metric space (X, ρ) the following assertions hold:

(a) A b-convergent sequence has a unique limit.
(b) Each b-convergent sequence is b-Cauchy.
(c) In general, a b-metric is not continuous.

Also very recently N. Hussain et al. have presented an example of a b-metric
which is not continuous (see Example 3 in [9]).

Definition 2.5 ([4]). (a) The b-metric space (X, ρ) is b-complete if every
b-Cauchy sequence in X be b-converges.

(b) Let (X, ρ) be a b-metric space. If Y is a nonempty subset of X , then
the closure Y of Y is the set of limits of all b-convergent sequences of
points in Y , i.e.,

Y :=
{

x ∈ X : there exists a sequence {xn} in Y so that blim
n→∞

xn = x
}

.

Taking into account of the above definition, we have the following con-
cepts.

(c) Let (X, ρ) be a b-metric space. Then a subset Y ⊂ X is called closed if
and only if for each sequence {xn} ∈ Y which b-converges to an element
x, we have x ∈ Y .

(d) Let (X, ρ) and (X ′, ρ′) be two b-metric spaces. Then a function f : X →
X ′ is b-continuous at a point x ∈ X if and only if it is b-sequentially
continuous at x, that is, whenever {xn} is b-convergent to x;{f(xn)} is
b-convergent to {f(x)}.

Lemma 2.6 ([23]). Let (X, ρ) be a b-metric space with s ≥ 1, and suppose that

each of sequence {xn} and {yn} is b-convergent to x and y, respectively. Then

we have,

1

s2
ρ(x, y) ≤ lim inf

n→∞
ρ(xn, yn) ≤ lim sup

n→∞
ρ(xn, yn) ≤ s2 ρ(x, y).
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In particular, if x = y, then we have limn→∞ ρ(xn, yn) = 0. Moreover, for each

z ∈ X, we have,

1

s
ρ(x, z) ≤ lim inf

n→∞
ρ(xn, z) ≤ lim sup

n→∞
ρ(xn, z) ≤ s2 ρ(x, z).

3. Completeness of new spaces

Lemma 3.1. Define the relation ρ∞ on the space λ by

ρ∞ : λ× λ −→ [0,∞)
(x, y) 7−→ ρ∞(x, y) = sup

k∈N

{ρ(xk, yk)}, (s ≥ 1)

where λ denotes any of the spaces ℓb∞, cb, cb0 and x = (xk), y = (yk) ∈ λ. Then,
(λ, ρ∞) is a b-complete metric space.

Proof. Since the proof is similar for the spaces cb and cb0, we prove the theorem
only for the space ℓb∞.

One can easily show by a routine verification that ρ∞ satisfies the b-metric
axioms for all s ≥ 1 on the space ℓb∞. So, we prove only the condition (b3). Let
x = (xk), y = (yk) and z = (zk) ∈ ℓb∞. Then,

(b3) By using the axiom (b3) in Definition 2.1 for all s ≥ 1 we get

ρ∞(xk, zk) = sup
k∈N

{

ρ(xk, zk)
}

≤ sup
k∈N

{

s[ρ(xk, yk) + ρ(yk, zk)]
}

≤ s [sup
k∈N

{ρ(xk, yk)} + sup
k∈N

{ρ(yk, zk)}]

= s [ρ∞(xk, yk) + ρ∞(yk, zk)].

Therefore, one can conclude that (ℓb∞, ρ∞) is a b-metric space on ℓb∞.

It remains to prove the b-completeness of the space ℓb∞. Let xm =
{

x
(m)
1 ,

x
(m)
2 , . . .

}

be a b-Cauchy sequence in ℓb∞. Then, for any ǫ > 0 there exists a

positive integer m0 such that

ρ∞(xm, xr) = sup
k∈N

ρ(x
(m)
k , x

(r)
k ) < ǫ

for all m, r > m0. A fortiori, for every fixed k ∈ N and for m, r > m0 then

(1)
{

ρ
(

x
(m)
k , x

(r)
k

)

: k ∈ N

}

< ǫ.

In this case for any fixed k ∈ N, by using completeness of R, we say that

x
(m)
k = {x

(1)
k , x

(2)
k , . . .} is a b-Cauchy sequence and is b-convergent. Now, we

suppose that blimm→∞ x
(m)
k = xk and x = (x1, x2, . . .). We must show that

blimm→∞ ρ∞(xm, x) = 0 and x ∈ ℓb∞.
The constant m0 ∈ N for all m > m0, taking the limit as r → ∞ in (1),

we obtain ρ(x
(m)
k , xk) < ǫ for all k ∈ N. Since xm =

(

x
(m)
k

)

∈ ℓb∞, there exists
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a positive number δ > 0 such that ρ(x
(m)
k , 0) ≤ δ. By taking into account

b-metric axiom (b3) we get

(2) ρ(xk, 0) ≤ s[ρ(xk, x
(m)
k ) + ρ(x

(m)
k , 0)] < s(ǫ+ δ)

for all s ≥ 1. It is clear that (2) holds for every k ∈ N whose right-hand side
does not involve k. This leads us to the consequence that x = (xk) ∈ ℓb∞. Also,
we immediately deduce that the inequality

ρ∞(xm, x) = sup
k∈N

ρ
(

x
(m)
k , xk

)

< ǫ

holds for m > m0. This shows that ρ∞(xm, x) → 0 as m → ∞. Since (xm) is
an arbitrary b-Cauchy sequence, ℓb∞ is b-complete. �

Lemma 3.2. Define the distance function ρp by

ρp : ℓbp × ℓbp −→ R+

(x, y) 7−→ ρp(x, y) =

{

∞
∑

k=0

ρ(xk, yk)
p

}1/p

, (1 ≤ p < ∞, s ≥ 1)

where x = (xk), y = (yk) ∈ ℓbp. Then, (ℓbp, ρp) is a b-complete metric space.

Proof. It is obvious that ρp satisfies the axioms (b1) and (b2). Let x = (xk),
y = (yk) and z = (zk) ∈ ℓbp. Then, we derive by applying the Minkowski’s
inequality that

ρp(x, z) =

{ ∞
∑

k=0

ρ(xk, zk)
p

}1/p

≤

{ ∞
∑

k=0

(s[ρ(xk, yk) + ρ(yk, zk)])
p

}1/p

≤ s

{( ∞
∑

k=0

ρ(xk, yk)
p

)1/p

+

( ∞
∑

k=0

ρ(yk, zk)
p

)1/p}

= s [ρp(x, y) + ρp(y, z)].

This shows that the axiom (b3) also holds. Therefore, one can conclude that
(ℓbp, ρp) is a b-metric space.

Since the proof is analogous for the cases p = 1 and p = ∞ we omit their
detailed proof and we consider only case 1 < p < ∞. It remains to prove the

completeness of the space ℓbp. Let xm =
{

x
(m)
1 , x

(m)
2 , . . .

}

be any b-Cauchy

sequence on ℓbp. Then for every ǫ > 0, there exists m0 ∈ N such that

(3) ρp(xm, xr) =

{ ∞
∑

k=0

ρ
(

x
(m)
k , x

(r)
k

)p
}1/p

< ǫ

for all m, r > m0. We obtain for each fixed k ∈ N from (3) that

(4) ρ
(

x
(m)
k , x

(r)
k

)

< ǫ
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for all m, r > m0. By using the completeness of R, we say that the sequence

x
(m)
k =

{

x
(1)
k , x

(2)
k , . . .

}

is a b-Cauchy sequence and is b-convergent for each

fixed k ∈ N, say to xk ∈ R. Now, we suppose that x
(m)
k → xk as m → ∞ and

x = (xk). We must show that blimm→∞ ρp(xm, x) = 0 and x ∈ ℓbp. From (4)
for each j ∈ N and m, r > m0 we get

(5)

j
∑

k=0

ρ
(

x
(m)
k , x

(r)
k

)p

< ǫp.

Take any m > m0. Let us pass to b-limit firstly r → ∞ and next j → ∞ in (5)
to obtain ρp(xm, x) < ǫ. By using the inclusion (2) and Minkowski’s inequality
for each j ∈ N that
{ ∞
∑

k=0

ρ(xk, 0)
p

}1/p

≤ s

{

( ∞
∑

k=0

ρ
(

x
(m)
k , xk

)p
)1/p

+

( ∞
∑

k=0

ρ
(

x
(m)
k , 0

)p
)1/p

}

< ∞,

which implies that x ∈ ℓbq. Since ρp(xm, x) ≤ ǫ for all m > m0 it follows that
blimm→∞ ρp(xm, x) = 0. Since (xm) is an arbitrary b-Cauchy sequence, the
space (ℓbq, ρp) is b-complete. �

Lemma 3.3. Define the relation Db
∞ on the space µ by

Db
∞ : µ× µ −→ [0,∞)

(x, y) 7−→ Db
∞(x, y) = sup

n∈N

ρ

(

n
∑

k=0

xk,
n
∑

k=0

yk

)

, (s ≥ 1)

where µ denotes any of the spaces bsb, csb, csb0 for all x = (xk), y = (yk) ∈ µ.
Then, (µ,Db

∞) is a b-complete metric space.

Proof. Since the proof is similar to Lemma 3.1, we omit the detail. �

Lemma 3.4. Define the distance functions ρ∆, ρ
∆
p and ρ∆∞ by

ρ∆(x, y) :=

∞
∑

k=0

ρ[(∆x)′k, (∆y)′k], (∆x)′k = xk − xk−1, x−1 = 0,

ρ∆p (x, y) :=

{

∞
∑

k=0

ρ[(∆x)k, (∆y)k]
p

}1/p

, (1 ≤ p < ∞),

ρ∆∞(x, y) := sup
k∈N

{

ρ[(∆x)k, (∆y)k]
}

, (∆x)k = xk − xk+1,

where x = (xk), y = (yk) are the element of any space µ, respectively with

s ≥ 1. Then, we can say the sets (bvb, ρ∆), (bvbp, ρ
∆
p ) and (bvb∞, ρ∆∞) are b-

complete metric spaces.

Proof. Proof follows from Lemma 3.2. �
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4. The duals of the sequence spaces with the Euclidean b-metric

In this section, following [3], we focus on the α-, β- and γ-duals of the
classical sequence spaces with Euclidean b-metric on R. For the sequence spaces
λ, µ, the set S(λ, µ) defined by

(6) S(λ, µ) :=

{

w = (wk) ∈ ω : (wkzk) ∈ µ for all z = (zk) ∈ λ

}

,

is called the multiplier space of λ and µ for all k ∈ N. One can easily observe for
a sequence space ν that the inclusions S(λ, µ) ⊂ S(ν, µ) if ν ⊂ λ and S(λ, µ) ⊂
S(λ, ν) if µ ⊂ ν hold. We define the α-, β- and γ-duals of a set λ ⊂ ω which
are respectively denoted by {λ}α, {λ}β and {λ}γ , as follows:

{λ}α :=

{

w = (wk) ∈ ω : (wkzk) ∈ ℓb1 for all z = (zk) ∈ λ

}

,

{λ}β :=

{

w = (wk) ∈ ω : (wkzk) ∈ csb for all z = (zk) ∈ λ

}

,

{λ}γ :=

{

w = (wk) ∈ ω : (wkzk) ∈ bsb for all z = (zk) ∈ λ

}

,

where (wkzk) the coordinatewise product of the sequence w and z for all k ∈ N.
Then {λ}β is called β-dual of λ or the set of all convergence factor sequences
of λ in csb. Firstly, we give a remark concerning with the b-convergence factor
sequences.

Remark 4.1. Let ∅ 6= λ ⊂ ω. Then the following statements are valid:

(a) {λ}β is a sequence space and ϕ < {λ}β < ω (‘<’ stands for ‘is a linear
subspace of’) where ϕ := {u = (uk) : ∃N ∈ N, ∀k ≥ N, uk = 0}.

(b) If λ ⊂ µ ⊂ ω then {µ}β < {λ}β .

(c) λ ⊂ {λ}ββ :=
(

{λ}β
)β
.

Proof. Since the proof is trivial for the conditions (b) and (c), we prove only
(a). Let m = (mk) and n = (nk) ∈ {λ}β.

(a) Let l ∈ λ. Then we get (mklk) ∈ csb; (nklk) ∈ csb and (mk + nk)lk =
(mklk) + (nklk) ∈ csb. Since l is arbitrary, m + n ∈ {λ}β. For any α ∈ R,
w = (wk) ∈ {λ}β we have (αwk)lk = α(wklk) ∈ csb and αw ∈ {λ}β. Therefore,
{λ}β is a linear subspace of the space ω. �

Remark 4.2. In the proof of Remark 4.1 we use this fact that in a b-metric
space if xn → x and yn → y, then xn + yn → x + y. By taking into account
that d is an Euclidean b-metric space such as ρ(x, y) = (x − y)2 this claim
is true. But it is not true for an arbitrary b-metric. Because of an arbitrary
b-metric function ρ(x, y) is not to be continuous in general case with s > 1 one
can conclude that xn + yn 9 x + y whenever xn → x and yn → y as n → ∞.
So {λ}β is not a linear subspace of the space ω.

Theorem 4.3. The following statements hold:
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(a) {cb0}
β = {cb}β = {ℓb∞}β = ℓb1.

(b) {ℓb1}
β = ℓb∞.

Proof. (a) Let ρ be an Euclidean b-metric on R. Obviously {ℓb∞}β ⊂ {cb}β ⊂
{cb0}

β by Remark 4.1(b). Then we must show that ℓb1 ⊂ {ℓb∞}β and {cb0}
β ⊂ ℓb1.

Now, consider w = (wk) ∈ ℓb1 and z = (zk) ∈ ℓb∞ be given. Then

n
∑

k=0

ρ(wkzk, 0) ≤ sup
k

ρ(zk, 0)
n
∑

k=0

ρ(wk, 0) < ∞

which implies that wz ∈ csb. So the condition ℓb1 ⊂ {ℓb∞}β holds.
Conversely, for a given y = (yk) ∈ ω \ ℓb1 we prove the existence of an x ∈ cb0

with yx /∈ csb. According to y /∈ ℓb1 we may take an index sequence (np) which is

a strictly increasing real valued sequence with n0 = 0 and
∑np−1

k=np−1
ρ(yk, 0) >

p (p ∈ N). If we define x = (xk) ∈ cb0 by xk := ((sgnyk)/p) where the real
signum function defined by

sgn(u) :=

{

u
|u| , u 6= 0,

0 , u = 0.

Thus, we get

np−1
∑

k=np−1

ykxk =
1

p

np−1
∑

k=np−1

yk(sgnyk) =
1

p

np−1
∑

k=np−1

ρ(yk, 0) ≥ 1

for all np−1 ≤ k < np. Therefore yx /∈ csb and thus y /∈ {cb0}
β. Hence

{cb0}
β ⊂ ℓb1.

(b) From the condition (c) of Remark 4.1 we have ℓb∞ ⊂
(

{ℓb∞}β
)β

= {ℓb1}
β

since {ℓb∞}β = ℓb1. Now we assume the existence of a w = (wn) ∈ {ℓb1}
β \ ℓb∞.

Since w is unbounded, there exists a subsequence (wnk
) of (wn) and we can

find a real number k2 such that ρ(wnk
, 0) ≥ k2 for all k ∈ N1. The sequence

(xn), defined by xn := (sgn(wnk
)/k2) if n = nk and 0 otherwise. Then x ∈ ℓb1.

However
∑

n

wnxn =
∑

k

ρ(wnk
, 0)

k2
≥
∑

k

1 = ∞.

Hence w /∈ {ℓb1}
β, which contradicts our assumption and {ℓb1}

β ⊂ ℓb∞. �

Theorem 4.4. The following statements hold:

(a) {csb}α = {bvb1}
α = {bvb0}

α = {bsb}α = ℓb1 (bvb0 = bvb ∩ cb0).

(b) {csb}β = bvb1, {bv
b
1}

β = csb, {bvb0}
β = bsb, {bsb}β = bvb0.

(c) {csb}γ = bvb1, {bv
b
1}

γ = bsb, {bvb0}
γ = bsb, {bsb}γ = bvb1.

Proof. We prove (b) and (c) for the space csb and the proofs of all other cases
are quite similar.
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(b) Let u = (uk) ∈ {csb}β and w = (wk) ∈ cb0. Define the sequence v =
(vk) ∈ csb by vk = (wk −wk+1) for all k ∈ N. Therefore,

∑

k ukvk b-converges,
but

(7)

n
∑

k=0

(wk − wk+1)uk =

[ n−1
∑

k=1

wk(uk − uk−1)

]

− wn+1un

and the inclusion ℓb1 ⊂ csb yields that (uk) ∈ {csb}β ⊂ {ℓb1}
β = ℓb∞. Then we

derive by passing to the b-limit in (7) as n → ∞ which implies that
∑∞

k=0(wk−

wk+1)uk =
∑∞

k=0 wk(uk −uk−1) for every k ∈ N. Hence (uk −uk−1) ∈ {cb0}
β =

{cb0}
α = ℓb1, i.e., u ∈ bvb1. Therefore, {cs

b}β ⊆ bvb1.

Conversely, suppose that u = (uk) ∈ bvb1. Then, (uk − uk−1) ∈ ℓb1. Further,
if v = (vk) ∈ csb, the sequence (wn) defined by wn =

∑n

k=0 vk for all k ∈ N, is

an element of the space cb. Since {cb}α = ℓb1, the series
∑

k wk(uk − uk−1) is
b-convergent. Also, we have

(8)

n
∑

k=m

(wk − wk+1)uk ≤

[ n−1
∑

k=m

wk(uk − uk−1)

]

+ wnun − wm−1um.

Since (wn) ∈ cb and (uk) ∈ bvb ⊂ cb, the right-hand side of inequality (8)
b-converges to zero as m,n → ∞. Hence, the series

∑∞
k=0 ukvk b-converges and

bvb1 ⊆ {csb}β .
(c) By using (a), it is known that bvb ⊆ {csb}β and since {csb}β ⊂ {csb}γ , so

bvb ⊂ {csb}γ . We need to show that {csb}γ ⊂ bvb. Let u = (un) ∈ {csb}γ and
v = (vn) ∈ cb0. Then, for the sequence (wn) ∈ csb defined by wn = (vn − vn+1)
for all n ∈ N, we can find a number K > 0 such that ρ

(

∑n

k=0 ukwk, 0
)

≤ K for

all n ∈ N. Since (vn) ∈ cb0 and (un) ∈ {csb}γ ⊂ ℓb∞, there exists a real number
M > 0 such that ρ(unvn, 0) ≤ M for all n ∈ N. Therefore,

n
∑

k=0

(uk − uk−1)vk ≤

n+1
∑

k=1

uk(vk − vk+1) + vn+2un+1 ≤ K +M.

Hence (uk − uk−1) ∈ {cb0}
γ = {cb0}

α = ℓb1, i.e., (un) ∈ bvb. Therefore, since the
inclusion {csb}γ ⊂ bvb holds, we conclude that {csb}γ = bvb. �

5. Some classes of matrix transformations

In this section, firstly we give some basic definitions which will be used in
this article.

Let A = (ank) be an infinite matrix of real numbers and x = (xk) ∈ ω be an
infinite sequence. Then we obtain the sequence (Ax)n, denoted by A-transform



CERTAIN SEQUENCE SPACES AND RELATED DUALS 287

of x, as

Ax =

















a11 a12 · · · a1k · · ·
a21 a22 · · · a2k · · ·
...

... · · ·
... · · ·

an1 an2 · · · ank · · ·
...

... · · ·
... · · ·

































x1

x2

...
xk

...

















=

















a11x1 + a12x2 + a13x3+ · · ·
a21x1 + a22x2 + a23x3+ · · ·

...
an1x1 + an2x2 + an3x3+ · · ·

...

















=

















(Ax)1
(Ax)2

...
(Ax)n

...

















.

In this case, we transform the sequence x into the sequence Ax = {(Ax)n}
with

(9) (Ax)n =

∞
∑

k=1

ankxk, n ∈ N,

provided the series on the right hand side of (9) b-converges for each n.
Let λ and µ be any two sequence spaces. If Ax exists and is in µ for every

sequence x = (xk) ∈ λ, then we say that A defines a matrix transformation
from λ into µ, i.e., A : λ → µ. By (λ : µ), we denote the class of all matrices
A from λ into µ.

Following Başar [3], the basic definition of summable sequences with respect
to the b-metric can be given as follows:

Definition 5.1. A sequence x = (xk) is said to be summable A to a real

number ℓ if the A- blim of x is α, i.e.,

(10) blim
n→∞

ρ((Ax)n, ℓ) = 0,

where ρ is a b-metric with s ≥ 1.

Basic Theorem 1. (i) A = (ank) ∈ (ℓb∞ : ℓb∞) if and only if

(11) sup
n∈N

∑

k

ρ(ank, 0) < ∞.

(ii) A = (ank) ∈ (cb : ℓb∞) if and only if (11) holds.
(iii) A = (ank) ∈ (cb0 : ℓb∞) if and only if (11) holds.
(iv) A = (ank) ∈ (ℓbp : ℓb∞) if and only if

(12) sup
n∈N

∑

k

ρ(ank, 0)
p < ∞ (0 < p < ∞).
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Proof. Since the proof can also be obtained in the similar way, we prove only
case (i).

(i) Suppose that (11) holds and x = (xk) ∈ ℓb∞. In this case, the A-transform
of x exists since (ank)k∈N ∈ {ℓb∞}β = ℓb1 for every fixed n ∈ N. By the hypoth-
esis one can conclude that

sup
n∈N

ρ((Ax)n, 0) = sup
n∈N

ρ
(

∑

k

ankxk, 0
)

≤ sup
k∈N

ρ(xk, 0) sup
n∈N

∑

k

ρ(ank, 0) < ∞.

Hence Ax ∈ ℓb∞.
Now, in order to prove the converse, let us suppose that A ∈ (ℓb∞ : ℓb∞) and

x = (xk) ∈ ℓb∞. Then the series
∑∞

k=1 ankxk is b-convergent for each fixed n,
since Ax exists. Hence An = (ank)

∞
k=0 ∈ {ℓb∞}β for all n ∈ N which implies

that
∑

k

ρ
(

ank, 0
)

≤
∑

k

ρ
(

ankxk, 0
)

≤ sup
n∈N

ρ
(

∑

k

ankxk, 0
)

< ∞.

Hence the sequence
{

∑

k ρ
(

ank, 0
)}

n∈N
is b-bounded which means that (11)

holds. �

Theorem 5.2. A = (ank) ∈ (cb : cb) if and only if (11) holds, and there exist

αk, l ∈ R such that

(13) blim
n→∞

ρ(ank, αk) = 0 for each k ∈ N,

(14) blim
n→∞

ρ

(

∑

k

ank, l

)

= 0.

Proof. Assume that A = (ank) ∈ (cb : cb). Then Ax exists for every x ∈ cb.

Let e = (ek) and e(n) = (e
(n)
k ) be the sequences with ek = 1 for all k ∈ N. By

taking x = e(k) and x = e, respectively, the necessity of (13) and (14) is trivial.
Since cb ⊂ ℓb∞, the necessity of (11) is obtained from Basic Theorem (i).

Conversely, suppose that (11), (13) and (14) hold and x = (xk) ∈ cb with

xk
ρ
→ s as k → ∞. So that, obviously, the A-transform of x exists since

(ank)k∈N ∈ {cb}β = ℓb1 for each n ∈ N. We now recall the following well-known
sum:

(15)
n
∑

k=1

ankxk =
n
∑

k=1

ank(xk − s) + s
n
∑

k=1

ank

for each n ∈ N. Taking the b-limit as n → ∞ in (15), we get

blim
n→∞

n
∑

k=1

ankxk = blim
n→∞

n
∑

k=1

αk(xk − s) + s blim
n→∞

n
∑

k=1

ank = sl.

Hence, Ax ∈ cb, that is the conditions are sufficient. �
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Corollary 5.3. A = (ank) ∈ (cb0 : cb) if and only if (11) holds and there exists

(αk) ∈ R such that

(16) blim
n→∞

ρ(ank, αk) = 0

for each k ∈ N.

Example 5.4. Let k, n, r ∈ N and r ≥ 0. The Cesaro means of order r is
defined by the matrix Cr = (crnk) as

(crnk) =







(n−k+r−1
n−k )
(n+r

n )
; if k ≤ n

0 ; otherwise.

Taking r = 2 we see that

C2 =





















1 0 0 0 0 · · ·
2
3

1
3 0 0 0 · · ·

3
6

2
6

1
6 0 0 · · ·

...
...

...
. . .

...
...

2(n+1)
(n+1)(n+2)

2n
(n+1)(n+2) · · · 2

(n+1)(n+2) 0 · · ·
...

...
...

. . .
...

...





















.

Since
∑

k ρ(c
2
nk, 0) < ∞ where ρ(x, y) = (x − y)2 then (11) and (14) hold.

Therefore, by combining this with blimn→∞ ρ(c2nk, 0) = 0 for each k ∈ N we
deduce that (13) is satisfied. Therefore C2 ∈ (cb : cb).

Corollary 5.5. A = (ank) ∈ (cb0 : cb0) if and only if (11) holds and (16) also

holds with αk = 0 for all k ∈ N.

Theorem 5.6. A = (ank) ∈ (ℓbp : cb) if and only if (12) and (16) hold.

Proof. Suppose that (12) and (16) hold, and x = (xk) ∈ ℓbp. Then, since Ax

exists and An ∈ {ℓbp}
β = ℓb1 for each n ∈ N. We thus find from (12) and

Hölder’s inequality that
m
∑

k=1

ρ(αkxk, 0) =
blim
n→∞

m
∑

k=1

ρ(ankxk, 0)

≤

{

∑

k

ρ(xk, 0)
p

}1/p{

sup
n∈N

∑

k

ρ(ank, 0)
q

}1/q

< ∞

for 1 ≤ p, 1/p+ 1/q = 1 for all n ∈ N which says us that (αkxk) ∈ ℓb1. That is
to say that (αk) ∈ ℓbq whenever (xk) ∈ ℓbp. Since x = (xk) ∈ ℓbp, one can choose
a k0 ∈ N for ε > 0 such that

∞
∑

k=k0+1

[ρ(xk, 0)]
p <

(

ε

2[(
∑

k ρ(ank, 0)
q)1/q + {

∑

k ρ(αk, 0)q}1/q]

)p
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for each fixed k ≥ k0. Additionally, from (16) we write blimn ρ(ankxk, αkxk) =
0 for each fixed k ∈ N. Hence there exists an N = N(k0) ∈ N such that

k0
∑

k=0

ρ(ankxk, αkxk) <
ε

2

for all n ≥ N . Then, we obtain

ρ

(

∑

k

ankxk,
∑

k

αkxk

)

≤
∑

k

ρ(ankxk, αkxk)

=

k0
∑

k=0

ρ(ankxk, αkxk) +

∞
∑

k=k0+1

ρ(ankxk, αkxk)

≤
ε

2
+

∞
∑

k=k0+1

[ρ(ankxk, 0) + ρ(αkxk, 0)]

≤
ε

2
+

∞
∑

k=k0+1

ρ(ank, 0)ρ(xk, 0) +
∞
∑

k=k0+1

ρ(αk, 0)ρ(xk, 0)

≤
ε

2
+

{

∞
∑

k=k0+1

ρ(xk, 0)
p

}1/p




{

∞
∑

k=k0+1

ρ(ank, 0)
q

}1/q

+

{

∞
∑

k=k0+1

ρ(αk, 0)
q

}1/q




≤
ε

2
+ ε

(
∑

k ρ(ank, 0)
q)

1/q
+ (
∑

k ρ(αk, 0)
q)

1/q

2[(
∑

k ρ(ank, 0)
q)1/q + {

∑

k ρ(αk, 0)q}1/q]
= ε

for all n ≥ N . Hence
∑

k ankxk b-converges for each n ∈ N and ρ
(

∑

k ankxk,
∑

k αkxk

)

→ 0 as n → ∞. This means that Ax ∈ cb.

Conversely, Let A = (ank) ∈ (ℓbp : cb) and x = (xk) ∈ ℓbp. Then, since Ax

exists and the inclusion (ℓbp : cb) ⊂ (ℓbp : ℓb∞) holds, the necessity of (12) is

trivial by (iv) of Basic Theorem. Given x(n) =
{

x
(n)
k

}

∈ ℓbp with x = e(k) for

each fixed k ∈ N, the necessity of (16) is obvious since (Ax)n ∈ cb. �

Corollary 5.7. A = (ank) ∈ (ℓbp : cb0) if and only if (12) holds and (16) also

holds with αk = 0 for all k ∈ N.

Theorem 5.8. A = (ank) ∈ (csb : cb) if and only if (13) holds, and

(17) sup
n∈N

∑

k

ρ(∆ank, 0) < ∞ where ∆ank = ank − an,k+1

for all n, k ∈ N.

Proof. Let x = (xk) ∈ csb with (
∑n

k=1 xk)
ρ
→ s as n → ∞ and yk =

∑k

i=0 xi

for all k ∈ N. Given infinite matrix B = (bnk) by bnk = ∆ank for all n, k ∈ N
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and let A ∈ (csb : cb). Then, Ax exists for every x ∈ csb and is in cb. It is
easy to prove the necessity of (13) that for a given x = e(k) ∈ csb for each fixed
k ∈ N. Also by using Abel’s partial summation for mth-partial sums of the
series

∑

k ankxk we write

m
∑

k=0

ankxk =

m−1
∑

k=0

∆ank(yk − s) + s

m−1
∑

k=0

∆ank + anmym

=
m−1
∑

k=0

∆ank(yk − s) + s(an0 − anm) + anmym for all m,n ∈ N.(18)

Then, by considering (ank)k∈N ∈ {csb}β = bvb ⊂ ℓb∞ for every fixed n ∈ N and
taking the b-limit for m → ∞ in (18) we get

(19) (Ax)n =
∑

k

ankxk =
∑

k

bnk(yk − s) + san0

for all n ∈ N. Combining this with blimn(Ax)n exists and an0
ρ
→ α0, then

blimn

∑

k bnk(yk − s) also exists for n → ∞ in (19). Since y − s ∈ cb whenever

x ∈ csb then B ∈ (cb0 : cb). Hence, the matrix B = (bnk) satisfies the condition
(17) which is necessary.

Conversely, (13) and (17) hold. From (17) it is obvious that An = (ank)k∈N ∈
{csb}β = bvb ⊂ ℓb∞ for every fixed n ∈ N. This leads us Ax exists for every
x ∈ csb. Also (13) and (17) imply by Corollary 5.5 that B = (bnk) ∈ (cb0 : cb0). It

follows by (19) that blimn ρ(
∑

k ankxk, α0s) = 0 which shows that A = (ank) ∈
(csb : cb). �

Theorem 5.9. A = (ank) ∈ (csb : csb) if and only if

(20) sup
n∈N

∑

k

ρ

( n
∑

j=0

∆ajk, 0

)

< ∞,

(21) blim
n→∞

ρ

(

∑

n

ank, αk

)

= 0,

where αk ∈ R for each k ∈ N.

Proof. Let x = (xk) ∈ csb and define the infinite matrix C = (cnk) by cnk =
∑n

j=0 ajk, i.e.,

C =





















a00 a01 a02 · · · a0k · · ·
a00 + a10 a01 + a11 a02 + a12 · · · a0k + a1k · · ·

a00 + a10 + a20 a01 + a11 + a21 a02 + a12 + a22 · · · a0k + a1k + a2k · · ·
...

...
... · · ·

... · · ·
a00 + · · ·+ an0 a01 + · · ·+ an1 a02 + · · ·+ an2 · · · a0k + · · ·+ ank · · ·

...
...

... · · ·
... · · ·
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for all k, n ∈ N. Let A = (ank) ∈ (csb : csb). Then, Ax exists for every
x = (xk) ∈ csb and is in csb. By choosing x = e(k) ∈ csb for each fixed k ∈ N

that (21) is necessary. By using the nth and mth-partial sums of the double
series

∑

j

∑

k ajkxk, it is clear that

(22)

n
∑

j=0

m
∑

k=0

ajkxk =

m
∑

k=0

n
∑

j=0

ajkxk =

m
∑

k=0

cnkxk

holds for all m,n ∈ N. Thus, by m → ∞ in (22) we have

(23)

n
∑

j=0

(Ax)j = (Cx)n for all n ∈ N.

From the hypothesis blimn

∑n
j=0(Ax)j exists and C = (cnk) ∈ (csb : cb).

Then, we deduce by the matrix C = (cnk) that the inclusion (17) holds which
is equivalent to the condition (20).

Conversely, consider (20) and (21) hold. Hence the existence of the A-
transform of x ∈ csb is trivial. Then, since (23) also holds, the matrix C satisfies

the conditions of Theorem 5.8. Hence, blimn(Cx)n exists which implies that
Ax ∈ csb. �

Theorem 5.10. A = (ank) ∈ (cb : csb) if and only if (21) holds and

(24) sup
n∈N

∑

k

ρ

( n
∑

j=0

ajk, 0

)

< ∞,

(25)
∑

n

∑

k

ank is b-convergent

for all k, n ∈ N.

Proof. Let x = (xk) ∈ cb and define the matrix C = (cnk) as in the proof of
Theorem 5.9. Let A = (ank) ∈ (cb : csb). Then, Ax exists for every x ∈ cb

and is in csb. This yields for x = e(k) ∈ cb and x = e ∈ cb which give the
necessity of the conditions (21) and (25), respectively. By applying the same
way used in the proof of Theorem 5.9, we get the inclusion (23). Then, since

Ax ∈ csb, that is
∑

j(Ax)j b-converges. By the hypothesis blimn

∑n

j=0(Ax)j
exists, from (23), we say that C = (cnk) ∈ (cb : cb). Thus, the condition (i) of
Basic Theorem is satisfied which is equivalent to the condition (24).

Conversely, assume that (21), (24) and (25) hold, then the existence of the
A-transform of x ∈ cb is clear. Since (23) also holds then C ∈ (cb : cb) which
yields that Ax ∈ csb, as was desired. �
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Concluding remarks

The idea of dual sequence space which plays an important role in the rep-
resentation of linear functionals and the characterization of matrix transfor-
mations between sequence spaces, was introduced by Köthe and Toeplitz [16],
whose main results concerned α-duals.

In this paper we have introduced the sequence spaces ℓb∞, cb, cb0, ℓ
b
p, bs

b, csb,

csb0, bv
b, bvbp and bvb∞ as a generalization of the sets ℓ∞, c, c0, ℓp, bs, cs, cs0,

bv, bvp and bv∞ of sequences. Our main purpose is to determine the Kothe-
Toeplitz duals of the new spaces and related matrix transformations on them.
As a future work we will try to obtain other characterizations of the classes of
infinite matrices via this metric.
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