DOI QR코드

DOI QR Code

Determination of the dietary lysine requirement by measuring plasma free lysine concentrations in rainbow trout Oncorhynchus mykiss after dorsal aorta cannulation

  • Yun, Hyeonho (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Park, Gunjun (Woosung Feed Co., Ltd.) ;
  • Ok, Imho (Aqua Leader, Co., Ltd.) ;
  • Katya, Kumar (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Hung, Silas SO (Department of Animal Science, University of California) ;
  • Bai, Sungchul C. (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
  • Received : 2016.01.29
  • Accepted : 2016.02.16
  • Published : 2016.03.31

Abstract

This study evaluated the dietary lysine requirement by measuring the plasma free lysine concentrations in rainbow trout, Oncorhynchus mykiss after dorsal aorta cannulation. A basal diet containing 36.6 % crude protein (29.6 % crystalline amino acids mixture, 5 % casein and 2 % gelatin) was formulated to one of the seven L-amino acid based diets containing graded levels of lysine (0.72, 1.12, 1.52, 1.92, 2.32, 2.72 or 3.52 % dry diet). A total of 35 fish averaging $512{\pm}6.8g$ ($mean{\pm}SD$) were randomly distributed into seven groups with five fish in each group. After 48 h of feed deprivation, each group of fish was fed one of the experimental diets by intubation at 1 % body weight. Blood samples were taken at 0, 5 and 24 h after intubation. Post-prandial plasma free lysine concentrations (PPlys, 5 h after intubation) of fish fed diets containing ${\geq}2.32%$ lysine were higher than those of fish fed diets containing ${\leq}1.92%$ lysine. Post-absorptive free lysine concentrations (PAlys, 24 h after intubation) of fish fed diets containing 2.32 and 3.52 % lysine were higher than those of fish fed diets containing ${\leq}1.52%$ lysine. The brokenline regression analysis on the basis of PPlys and PAlys indicated that the lysine requirement of rainbow trout could be 2.34 and 2.20 % in diet. Therefore, these results strongly suggested that the dietary lysine requirement based on the broken-line model analyses of PPlys and PAlys could be greater than 2.20 % but less than 2.34 % (corresponding to be $6.01%{\leq},but{\leq}6.39%$ in dietary protein basis, respectively) in rainbow trout. Also, these results shown that the quantitative estimation of lysine requirement by using PPlys and PAlys could be an acceptable method in fish.

Keywords

References

  1. Ahmed I, Khan MA. Dietary lysine requirement of fingerling Indian major carp Cirrhinus mrigala (Hamilton). Aquaculture. 2004;235:499-511. https://doi.org/10.1016/j.aquaculture.2003.12.009
  2. Bae JY, Ok IH, Lee, et al. Reevaluation of dietary methionine requirement by plasma methionine and ammonia concentrations in surgically modified rainbow trout Oncorhynchus mykiss. J Appl Ichthyol. 2011;27:887-91. https://doi.org/10.1111/j.1439-0426.2010.01513.x
  3. Bai SC, Ok IH, Park, et al. Development of modeling system for assessing essential amino acid requirements using surgically modified rainbow trout. J Aquacult. 2003;16:1-7.
  4. Borlongan IG, Benitez LV. Quantitative lysine requirement of milkfish Chanos chanos juveniles. Aquaculture. 1990;87:341-7. https://doi.org/10.1016/0044-8486(90)90071-T
  5. Brown PB, Davis DA, Robinson EH. An estimate of the dietary lysine requirement of juvenile red drum Sciaenops ocellatus. J World Aquac Soc. 1988;19:109-12. https://doi.org/10.1111/j.1749-7345.1988.tb00937.x
  6. Cowey CB. Protein and amino acid requirements: a critique of methods. J Appl Ichthyol. 1995;11:199-204. https://doi.org/10.1111/j.1439-0426.1995.tb00019.x
  7. Dabrowski K. Postprandial distribution of free amino acids between plasma and erythrocytes of common carp Cyprinus carpio. Comp Biochem Physiol. 1982;72A:753-63.
  8. De Silva SS, Gunasekera RM, Gooley G. Digestibility and amino acid availability of three protein-rich ingredient-incorporateddiets by Murray cod Maccullochella peelii and the Australian shortfin eel Anguilla australis. Aquac Res. 2000;31:195-205. https://doi.org/10.1046/j.1365-2109.2000.00432.x
  9. Espe M, Lied E, Torrissen KR. Changes in plasma and muscle free amino acids in Atlantic salmon Salmo salar during absorption of diets containing different amounts of hydrolysed cod muscle protein. Comp Biochem Physiol. 1993;105A:555-62.
  10. Forster I, Ogata HY. Lysine requirement of juvenile Japanese flounder Paralichthys olivaceus and juvenile red sea bream Pagrus major. Aquaculture. 1998;161:131-42. https://doi.org/10.1016/S0044-8486(97)00263-9
  11. Harris LE. Feedstuffs. In: Pillay TVR, editor. Fish feed technology. Rome, Italy: UNDP/FAO; 1980. p. 111-68.
  12. Houston AH. Blood and circulation. In: Schreck CB, Moyle PB, editors. Methods for fish biology. New York, USA: American Fisheries Society; 1990. p. 273-343.
  13. Ketola HG. Requirement for dietary lysine and arginine by fry of rainbow trout. J Anim Sci. 1983;56:101-7. https://doi.org/10.2527/jas1983.561101x
  14. Kim KI, Kayes TB, Amundson CH. Requirements for lysine and arginine by rainbow trout Oncorhynchus mykiss. Aquaculture. 1992;106:333-44. https://doi.org/10.1016/0044-8486(92)90265-M
  15. Kim KI. Reevaluation of protein and amino acid requirements of rainbow trout Oncorhynchus mykiss. Aquaculture. 1997;151:3-7. https://doi.org/10.1016/S0044-8486(96)01483-4
  16. Luo Z, Liu YJ, Mai, et al. Quantitative L-lysine requirement of juvenile grouper Epinephelus coioides. Aquacult Nutr. 2006;12:165-72. https://doi.org/10.1111/j.1365-2095.2006.00392.x
  17. Mai KS, Zhang L, Aiet, et al. Dietary lysine requirement of juvenile Japanese seabass Lateolabrax japanicus. Aquaculture. 2006;258:535-42. https://doi.org/10.1016/j.aquaculture.2006.04.043
  18. Marcouli PA, Alexis MN, Andriopoulouet, et al. Dietary lysine requirement of juvenile gilthead seabream Sparus aurata L. Aquacult Nutr. 2006;12:25-33. https://doi.org/10.1111/j.1365-2095.2006.00378.x
  19. Murai T, Ogata H, Hirasawa Y, Akiyama, et al. Portal absorption and hepatic uptake of amino acids in rainbow trout force fed complete diets containing casein or crystalline amino acids. Nippon Suisan Gakkaishi. 1987;53:1847-59. https://doi.org/10.2331/suisan.53.1847
  20. Nose T. Changes in patterns of free plasma amino acids in rainbow trout after feeding. Bull Freshwater Fish Res Lab. 1972;22:137-44.
  21. Ogino C. Requirement of carp and rainbow trout for essential amino acids. Bull Jap Soc Sci Fish. 1980;46:171-4. https://doi.org/10.2331/suisan.46.171
  22. Ok IH, Bai SC, Park, et al. The patterns of plasma free amino acids after forcefeeding in rainbow trout Oncorhynchus mykiss with and without dorsal aorta cannulation. Aquacult Res. 2001;32:70-5.
  23. Ok IH. Determination of essential amino acid requirements by using plasma free amino acid concentrations in rainbow trout Oncorhynchus mykiss. Ph. D. Thesis. Busan, Korea: Pukyong National University; 2002.
  24. Park GJ, Bai SC, Ok, et al. Post prandial plasma free arginine concentrations increase in rainbow trout fed arginine deficient diets. Asian-Australas J Anim Sci. 2005;18:396-402. https://doi.org/10.5713/ajas.2005.396
  25. Plakas SM, Katayama T, Tanaka Y, Deshimaru O. Changes in the levels of circulating plasma free amino acids of carp Cyprinus carpio after feeding a protein and an amino acid diet of similar composition. Aquaculture. 1980;21:307-22. https://doi.org/10.1016/0044-8486(80)90066-6
  26. Robbins KR, Norton HW, Baker DH. Estimation of nutrient requirements from growth data. J Nutr. 1979;109:1710-4. https://doi.org/10.1093/jn/109.10.1710
  27. Rodehutscord M, Becker A, Pack M, et al. Response of rainbow trout Oncorhynchus mykiss to supplements of individual essential amino acids in a semipurified diet, including an estimate of the maintenance requirement of essential amino acids. J Nutr. 1997;126:1166-75.
  28. Ruchimat T, Masumoto T, Hosokawa, et al. Quantitative lysine requirement of yellowtail Seriola quinqueradiata. Aquaculture. 1997;158:331-9. https://doi.org/10.1016/S0044-8486(97)00215-9
  29. Schuhmacher A, Wax C, Gropp JM. Plasma amino acids in rainbow trout Oncorhynchus mykiss fed intact protein or a crystalline amino acid. Aquaculture. 1997;151:15-28. https://doi.org/10.1016/S0044-8486(96)01502-5
  30. Simmons L, Moccia RD, Bureau, et al. Dietary methionine requirement of juvenile Arctic charr Salvelinus alpinus. Aquac Nutr. 1999;5:93-100. https://doi.org/10.1046/j.1365-2095.1999.00097.x
  31. Small BC, Soares Jr JH. Quantitative dietary lysine requirement of juvenile striped bass Morones axatilis. Aquacult Nutr. 2000;6:207-12. https://doi.org/10.1046/j.1365-2095.2000.00140.x
  32. Sunde J, Kiessling A, Higgs. Evaluation of feed protein quality by measuring plasma free amino acids in Atlantic salmon Salmo salara fterdorsal aorta cannulation. Aquacult Nutr. 2003;9:351-60. https://doi.org/10.1046/j.1365-2095.2003.00263.x
  33. Thebault H, Alliota E, Pastoureauda A. Quantitative methionine requirement of juvenile sea-bass Dicentrarchus labrax. Aquaculture. 1985;50:75-87. https://doi.org/10.1016/0044-8486(85)90154-1
  34. Tibaldi E, Tulli F. Dietary threonine requirement of juvenile Europeansea bass Dicentrarchus labrax. Aquaculture. 1999;175:155-66. https://doi.org/10.1016/S0044-8486(99)00029-0
  35. Vermeirssen ELM, Scott AP, Liley NR. Female rainbow trout urine contains a pheromone which causes a rapid rise in plasma $17{\alpha}$, $20{\beta}$-dihydroxy-4- pregnen-3-one levels and milt amounts in males. J Fish Biol. 1997;50:107-19.
  36. Walton MJ, Wilson R. Postprandial changes in plasma and liver free amino acids of rainbow trout fed complete diets containing casein. Aquaculture. 1986;51:105-15. https://doi.org/10.1016/0044-8486(86)90132-8
  37. Walton MJ, Cowey CB, Adron JW. The effect of dietary lysine levels on growth and metabolism of rainbow trout Salmo gairdneri. Br J Nutr. 1984;52:115-22. https://doi.org/10.1079/BJN19840077
  38. Wang S, Liua YJ, Tianet, et al. Quantitative dietary lysine requirement of juvenile grass carp Ctenopharyngodon idella. Aquaculture. 2005;249:419-29. https://doi.org/10.1016/j.aquaculture.2005.04.005
  39. Wilson RP, Poe WE, Robinson EH. Leucine, isoleucine, valine and histidine requirements of fingerling channel catfish. J Nutr. 1980;110:627-33. https://doi.org/10.1093/jn/110.4.627
  40. Wilson RP. Amino acids and proteins. In: Halver JE, Hardy RW, editors. Fish nutrition. 3rd ed. New York, USA: Academic; 2002. p. 144-75.
  41. Zhou QC, Wu ZH, Chi SY, Yang QH. Dietary lysine requirement of juvenile cobia Rachycentron canadum. Aquaculture. 2007;273:634-40. https://doi.org/10.1016/j.aquaculture.2007.08.056
  42. Zicker SC, Rogers QR. Use of plasma amino acid and metabolic diseases in veterinary medicine. In: Kaneko JJ, ed. Proceedings of IVth Congress of the International Society for Animal Clinical Biochemistry. Davis, USA: University of California; 1990. p. 107-121.

Cited by

  1. Effects of different diets on the intestinal microbiota and immunity of common carp (Cyprinus carpio) vol.127, pp.5, 2019, https://doi.org/10.1111/jam.14405
  2. Study on the adaptability of common carp (Cyprinus carpio) to diets from the perspective of digestion and absorption vol.51, pp.6, 2016, https://doi.org/10.1111/are.14592
  3. Effects of lysine and leucine in free and different dipeptide forms on the growth, amino acid profile and transcription of intestinal peptide, and amino acid transporters in turbot (Scophthalmus maxim vol.46, pp.5, 2020, https://doi.org/10.1007/s10695-020-00828-2
  4. Dietary lysine requirement of greater amberjack juvenile (Seriola dumerili, Risso, 1810) vol.27, pp.6, 2016, https://doi.org/10.1111/anu.13344