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Abstract

Although soft tunic syndrome (STS) in the ascidian is a serious disease, helpful measures have yet not been
established. It was examined in this study by applying aniti-parasitic drugs to eradicate the causative protozoa
Azumiobodo hoyamushi from infected ascidians. Formalin was synergistic in killing parasites in vitro when co-treated
with hydrogen peroxide (H2O2) or bronopol, but not with chloramine-T or povidone-iodine (PVP-I), when tested with
in vitro parasite culture. The synergistic effects did not change when formalin-H2O2 (or bronopol) ratios were changed.
It was found that treatment periods less than 60 min achieved a sub-maximal efficacy. Increasing drug concentration
while keeping 30 min period improved anti-parasitic effects. Anti-parasitic effects of formalin(F) + H2O2(H) were also
assessed in an in vivo STS model infected with cultured parasites. It was observed that combined 50 (40F + 10H) and
100 (80F +20H) ppm were effective in partially preventing STS-caused mortality. In horizontally transmitted artificial STS
model, significant prevention of ascidian mortality was also observed after 50 ppm. Marked reduction of living parasites
were noted after drug treatments in vivo. The results provide a highly useful basis to develop a preventive or treatment
measure against the currently uncontrollable STS in the ascidian.
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Background
Starting from the late 1980’s, soft tunic syndrome (STS)
has become one of the most notorious nuisances in
Korean ascidian culture industry (Kim et al. 2014).
The disease is now known to be caused by a protozoan
pathogen Azumiobodo hoyamushi (A. hoyamushi). This
parasite resides within the tunic tissue leading to disinte-
gration of the cellulose-based exoskeleton structure of the
ascidian (Kumagai et al. 2010, 2011; Kim et al. 2014). It
has been reported that the parasite is opportunistic in
plaguing the cultured ascidian, but the pathogen has

also been reported to be present in other similar mar-
ine animals.
While the disease is severely affecting ascidian indus-

try to the extent that even its sustainability is threatened,
still there is no effective measure to control the disease.
One way that can be considered to resolve this predica-
ment is to utilize various currently available biocidal
agents. In our previous report (Park et al. 2014), it was
demonstrated that several biocidal drugs are effective in
killing the causative protozoa both in vivo and in vitro.
Judging simply from the potency and toxicity of drugs
tested, several drugs including formalin, hydrogen per-
oxide (H2O2) and bronopol, in single treatments, were
found promising deserving detailed researches.
In the present study, we examined the co-treatment

effects of drugs which are singly efficacious in killing the
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parasites. When two agents are simultaneously applied
to kill pathogens, one agent can influence the efficacy
of the other (Klaasen 2001). What is ideal for treatment
is a synergistic treatment activity with accompanying
minimal toxicity to the host. To be synergistic two
drugs need to act on different effector systems or exert by
different action mechanisms (Mutschuler and Derendorf
1995). In contrast, however, if the two drugs scavenge
each other, the net effect can be lower than their arith-
metic sum.
In view of the weakness that most non-specific disin-

fectants have narrow margin of safety (Maris 1995), we
aimed to examine combinational effects of anti-parasitic
agents with a hope to identify synergistic activities.
Effects were evaluated both in pure cultured parasites
A. hoyamushi in vitro, and also in artificially infected
ascidians in vivo to delineate the applicability of de-
veloped methods in the farm.

Methods
Chemicals
Chloramine-T hydrate (chloramine), bronopol, povodone-
iodine (poly-vinylpyrrrolidine-iodine complex, PVV-I)
were purchased from Sigma Co. (St. Louis, MO, USA).
Formaldyhyde solution (37 %) and hydrogen peroxide
(35 %) were obtained from Junsei Co. (Tokyo, Japan). All
other main chemicals not specified were also obtained
from Sigma.

Parasite culture
The pathogenic parasite A. hoyamushi was isolated from
tunics of diseased ascidians as described previously (Park
et al. 2014). Isolated pathogens were incubated at 15 °C
in minimum essential medium (MEM) supplemented
with fetal bovine serum, glutamine, penicillin, sea salt,
streptomycin, and HEPES buffer. Prepared medium was
filtered through 0.45 μm filter papers.

In vitro anti-parasitic effects of drugs in pure parasite
culture
Pure culture of A hoyamushi was grown in MEM for
3–4 days to the cell density of about 1 × 108/ml. After
adjustment to 5 × 105 cells/ml, the culture was added
to 12-well plates in 1-ml volume and incubated with
test drug solutions at different concentrations and ex-
posure periods. To estimate parasite-killing effects of
drugs, 200 cells were randomly counted with a re-
verse phase microscopy at 400-fold magnification.

In vivo anti-parasitic effects of drugs in artificially infected
ascidians
Apparently healthy ascidians weighing about 70 g were
transported from a culture farm located in Tongyong
City, Kyungnam Province, Korea. They were kept in the

laboratory at 15 °C and 30.5 psu for 1 week to
acclimatize. Cultured parasites of 1.0 × 107 cells were
added into the 100-l ascidian-containing aquaria and
maintained until mild symptoms (Kimura scale, Kitamura
et al. 2010) developed in about 20 % of organisms (took
about 3 days). Thirty individuals each were randomly allo-
cated to 20-L aquaria in the absence and presence of test
drugs. Exposures were performed only once on day 1 at
necessary drug concentrations and exposure periods.
Mortality of the ascidians was monitored for 14 days
thereafter. During the exposure, number of live parasites
in the tunics was estimated with some ascidians. This ex-
periment was performed in two separate sets of experi-
ments due to difficulties of obtaining non-infected
colonies: the first was with 50 and 100 ppm of combined
drugs and the second with 20 ppm. The whole procedure
of in vivo assessments was conducted according to the
Ethics Codes of the Animal Experiment Approval Com-
mittee, Kunsan National University, Korea.

In vivo anti-parasitic effects of drugs in horizontally-
infected ascidians
Both healthy and diseased ascidians were transported
from culture farms of different locations in Tongyong
City. Healthy individuals (30 individuals, about 80 g
body weight) were maintained with six severe grade as-
cidians (about 80 g). The healthy ascidians were kept
hanging with the ropes similarly to the situation used in
the farm. The ropes were about 50 cm long and were
perpendicularly maintained at 15 °C. When about 20 %
of animals exhibited mild STS signs, ascidians were
immersed into the drug bath for 1 h on day 1 before
starting monitoring mortality. At the termination of
mortality observation, the number of live parasites in the
tunic was estimated.

Estimation of live parasites in the tunic
The method was basically identical to that described
previously (Park et al., 2014). In short, ten individuals
were randomly selected from each group and the whole
tunic tissue was isolated. The tunics were immersed in
20-ml filter-sterilized sea water and incubated for 24 h
at 15 °C. Total live cell counting was made using a he-
macytometer and light microscope.

Results
In vitro anti-parasitic effects of drugs in pure parasite
cultures
Based on previous anti-parasitic effects (Park et al.
2014) of various drugs, formalin, H2O2 and bronoplol,
chloramines-T (referred to chloramines) and povidone-
iodine (PVP-I) were selected for combinational potency
measurements. Figure 1 illustrates in vitro parasite-killing
effects of test drugs when combined with formalin and
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treated for 60 min. In the single 5 ppm exposure with
formalin, hydrogen peroxide (H2O2), bronopol, chlor-
amine and PVP-I, all drugs exerted parasite-killing effects
of 8–31 %. However, combinations of formalin +H2O2 or
formalin + bronopol exhibited strong synergistic effects.
Synergistic effects were not observed in formalin + chlor-
amine or formalin + povidone-iodine combinations.

Effect of different exposure period and exposure
concentrations in vitro
Exposure period of 60 min is likely to be an obstacle in
on-site field applications, and thus it must be better if
possible to shorten it. In order to evaluate shorter expo-
sures, parasites were exposed in vitro for 20–60 min
with 4:1 ppm standard combinations of formalin-H2O2

or formalin-bronopol. As results in Fig. 2a indicate,
20–40 min exposure could only exert a slightly com-
promized activity indicating that 60 min is the re-
quirement with 4 ppm.
Another option to compensate the submaximal effi-

cacy of shorter drug exposure can be increasing drug
concentrations. When formalin-H2O2 (or bronopol) con-
centration was escalated from 5 ppm (total) to 20 ppm,
generally there was a concentration-dependent increase
in parasiticidal activity (Fig. 2b). In adition, exposure
with 10 ppm was more effective than 5 ppm with
formalin-H2O2 but not with formalin-bronopol.

In vivo anti-parasitic effects of drugs in infected ascidians
After infection with pure cultured parasites, ascidians
were bathed for 1 h in formalin-H2O2 combinations
at 20, 50 and 100 ppm (total). Figure 3 illustrates
drug effects on mortality after an artificial infection

with parasites to non-infected, healthy ascidians. As the
tests were performed in two separate sets, the control
mortalities were not identical being that of control in
20 ppm was slightly higher than in 50 and 100 ppm.
The starting time point for drug testing was when

there was a clear appearance of STS signs in about 20 %
of animals. Clear reduction in ascidian mortality was ob-
tained with 50 (Fig. 3b) and 100 ppm (Fig. 3c), but not
with 20 ppm (Fig. 3a). During the mortality observation
period of 14 days, number of live parasites in the tunic
tissue was enumerated. It was observed that there were
about an average of 20,000 parasites/ascidian on day 5
from the start of monitoring, and the number increased
significantly on day 10 to about 80,000 without treat-
ment (see Fig. 4, Control columns). These live parasites
were almost completely removed when ascidians were
bathed with 50 ppm of formalin-H2O2 once for 1 h on
day 1 (Fig. 4, Treated columns).
Similar in vivo anti-parasitic effects were identified in

another STS model in which infection was achieved by
co-incubation with diseased individuals. In the two inde-
pendent trials with 55–60 ascidians in each treatment
group, formalin-H2O2-treated groups (50 ppm total)
demonstrated apparently better survivals (Fig. 5). While
the mortality was above 80 % without treatment by day
14, mortalities of about 30 % (Trial #1) and 5 % (Trial
#2) were respectively observed. In this horizontal trans-
mission model, too, significant reduction in live parasites
was confirmed (right-sided two panels in Fig. 5).

Discussion
It is urgently required to invent methods to control the
spread of STS disease, the one most devastating cause

Fig. 1 In vitro anti-parasitic effects singly and in combinations. Parasites were exposed to test drugs for 60 min singly or in combinations of two
drugs. PVP-I povidone iodine, F:H formalin-H2O2, F-B formalin-bronopol, F:C formalin-chloramine-T, F:P formalin-PVP-I. Ratios in combinations were
4:1, 2.5-2.5, or 1:4 ppm. n = 3
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currently impacting ascidian (squirt) industry. Different
methods have been explored in the pursuit of resolving
the predicament, and some examples are farm rotation
(Kim et al. 2014), genetic selection of more tolerant indi-
viduals (Cho et al. 2008) and present trials to move
farms to the far open sea areas. Treatment of the culture
animals with biocidal drugs can be considered as one
option for this purpose.
In this study, it was assessed whether dual biocide

treatment can be a better choice to increase efficacy of
the drugs. The choice of test drugs were based on two
criteria: (1) effectiveness of drugs in single treatment
from previous studies (Park et al. 2014; Lee et al. 2013);
(2) availability and legal uses for aquacultural purposes.
Dual treatment has not been often adopted in using

non-specific biocides in contrast to the frequent uses of
antibiotics to achieve synergistic advantage in aquacul-
ture (Smith 2012). Only limited reports are available

a

b

Fig. 2 In vitro anti-parasitic effects of different exposure periods and
different drug concentrations. For different exposure period, parasites
were exposed for 20, 40 and 60 min with formalin-H2O2 or formalin-
bronopol combinations a. For different concentrations, parasites
were exposed for 30 min with formalin-H2O2 and formalin-
bronopol at 5, 10 or 20 ppm of total drug concentrations b. The
ratios in both tests were 4:1 ppm. n = 3

a

b

c

Fig. 3 In vivo anti-parasitic effects of formalin-H2O2 combination
against parasite culture-induced STS model. STS was induced by
adding pure culture of parasites to aquaria until about 20 % of
ascidians exhibit mild symptoms. Data in b and c were obtained
in the same set of experiment, whereas those of panel a were
from an additional set. Statistical significance was found between
control and drug treatment in b and c (Fisher’s exact test for
final mortality, p < 0.05). n = 30
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which suggest synergism in biocidal drug use use. Syner-
gistic anti-parasitic effects were demonstrated when for-
malin and malachite green were simultaneously treated
against the protozoal pathogen Tetrtahymena pyriformis
(Gilbert et al. 1979). Combination of sulfonamides with
neomycin also exerted potentiated effects against the

protozoal parasite Labyrinthuloides haliotidis in abalone
(Bower 1989). In addition, synergistic activities were
identified in the combinations of formalin + bronopol or
formalin +MBT (a cactus extract) against the salmon
egg-infecting fungus (Jee and Lee 2009).
Formalin is one of the most widely used non-specific

biocides worldwide to treat aquatic pathogens including
protozoa (Treves-Brown 2000). This disinfectant is ap-
proved for olive flounder and eggs by bath treatments
in Korea. Bronopol (bromo-2-nitropropane-1,3-diol) is
effective against protozoan parasites, such such as
Icthyophthirius multifiliis (Shinn et al. 2012a, b). This
drug has not, however, been introduced to Korean
aquaculture, yet. Due to its quick decomposition into
water and gaseous oxygen after application, H2O2 is
very safe to culture animals and human consumers
(Treves-Brown 2000). This drug is used in general to
sanitize culture water. H2O2 has shown promising
results in treating different protozoan parasites (Harms
1996; Russo et al. 2007). In this study, synergistic actions
were identified with formalin-H2O2 or formalin-bronopol
combinations. No clear synergism was observed with
formalin-chloramine and formalin-PVP-I combinations.
Synergistic activities are closely related to action

mechanisms of the two drugs. To be synergistic, one

Fig. 4 Effects of formalin-H2O2 combination on live parasite numbers.
Ascidians from the in vivo STS experiment (refer to Fig. 3) were used.
D5, day 5; D10, day 10. Statistical analysis with ANOVA followed
by Newman-Keul’s test revealed significance between control
and treatment for each corresponding time point. n = 10

Fig. 5 In vivo anti-parasitic effects of formalin-H2O2 combination on STS model induced by horizonal transmission. STS was induced by keeping
healthy ascidians with severely diseased individuals until about 20 % of ascidians exhibit mild symptoms. Live parasite numbers were examined
on surviving ascidians until day 14. Statistical significance was found between control and drug treatment in both trials (Fisher’s exact test for final
mortality, p < 0.05). n = 55, Trial #1; n = 60, Trial #2
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drug should enhance the binding of another drug to tar-
get sites, or enhance transport to target areas. How-
ever, it is almost impossible to expect the occurrence
of synergism in a straightforward way because numer-
ous factors are involved until eventual death of para-
sites occurs (Bell 2005). Experimental demonstration
is always needed.
Formalin (formaldehyde) denatures vital biomolecules

working as a bridge irreversiblly by liking two amine
groups between adjacent molecules (Mason and O’Leary
1991). While bronopol causes membrane damage in
organisms through the inhibition of membrane bound
enzymes (Stretton and Manson 1973). On the other hand,
H2O2 releases reactive oxygen species to denature pro-
teins and lipids in the organisms (Maris 1995). The dis-
similarity in mechanisms involved in the combinations of
formalin-H2O2 and formalin-bronopol seemed to satisfy
necessary conditions for synergism. From unknown rea-
sons, yet, synergism was not observed with chloramine
and PVP-I, both of which commonly produce reactive
halogen radicals as their action mechanism (McDonnell
and Russell 1999).
From the current finding, it was found important to

keep the bathing time of 60 min. This can be a barrier
in field use because of a long operation time. Methods
to facilitate the onset of drug actions seem to be needed:
elevation of bath water temperature can be one plausible
option, since this change will accelerate the absorption
rate of drugs. This method is, at least however, applic-
able in disinfecting brood stock treatments in inland
seed production facilities.

Conclusions
Conclusively, the suggested measure based on this study
does not constitute an ultimate tool to control the STS
in the field. It is also needed to refine methods to
minimize adverse impacts on the ascidians being treated
and on the marine environments. Despite all such limi-
tations and accompanying legal restrictions, the results
obtained for this study will be useful as one guide to de-
velop field applicable methods against the currently
helpless STS situations.
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