DOI QR코드

DOI QR Code

Particle Shapes and Optical Property of Synthesized ZnO with Amine Additives

아민첨가제를 사용하여 합성된 ZnO의 입자형상 및 광학적 특성

  • Hyeon, Hye-Hyeon (Department of Engineering Chemistry, Chungbuk National University) ;
  • Hyun, Mi-Ho (Department of Engineering Chemistry, Chungbuk National University) ;
  • Lee, Dong-Kyu (Department of Engineering Chemistry, Chungbuk National University)
  • 현혜현 (충북대학교 공과대학 공업화학과) ;
  • 현미호 (충북대학교 공과대학 공업화학과) ;
  • 이동규 (충북대학교 공과대학 공업화학과)
  • Received : 2016.02.23
  • Accepted : 2016.03.07
  • Published : 2016.03.30

Abstract

Zinc oxide of hexagonal wurzite, is known as n-type semiconductor. It has a wide band gap energy of 3.37 eV and large exciton binding energy of 60 meV. It can be widely applied to gas sensors, laser diodes, dye-sensitized solar cells and degradation of dye waste. The use of microwave hydrothermal synthesis brings a rapid reaction rate, high yield, and energy saving. Amine additives control the different particle shapes because of the chelate effect and formation of hydroxide ion. In this study, zinc nitrate hexahydrate was used as zinc precursor. In addition, ethanolamine, ethylenediamine, diethylenetriamine, and hexamethylenetetramine are used as shape control agent. The pH value was controlled as 11 by NaOH. The shapes of zinc oxide are star-like, rod, flower-like, and circular cone. In order to analyze physical, chemical, and optical properties of ZnO with diverse amine additives, we used XRD, SEM, EDS, FT-IR, UV-Vis spectroscopy, and PL spectroscopy.

육방정계 우르자이츠형의 산화아연은 n형 반도체로써 3.37 eV의 넓은 밴드갭 에너지와 60 meV의 큰 엑시톤 바인딩 에너지를 가진 물질이다. 가스센서, 발광 다이오드, 염료 감응 태양 전지, 염료오염의 분해 등의 넓은 범위에서 활용이 가능하다. 합성 시 마이크로파 수열합성법을 사용하게 되면 높은 수율, 빠른 반응속도, 에너지 절약의 장점이 있다. 아민첨가제는 수산이온 생성 및 킬레이트 효과로 인해 산화아연 입자 형상을 조정하는 역할을 한다. 본 논문에서는 전구체로는 질산아연육수화물을 사용하였고, 형상조정제로는 에탄올아민, 에틸렌디아민, 디에틸렌트리아민, 헥사메틸렌테트라민을 사용하였다. 수산화소듐을 사용하여 용액을 pH 11로 조정하였다. 합성된 산화아연은 별모양, 막대형, 꽃모양, 원추형의 다양한 형상을 확인할 수 있었다. 아민첨가제에 의한 물리 화학적 특성과 광학적 특성을 분석하기 위해 XRD, SEM, EDS, FT-IR, UV-vis 스펙트럼, PL 스펙트럼을 사용하였다.

Keywords

References

  1. S. Liang, L. Zhu, G. Gai, P. Zhang, Synthesis of morphology-controlled ZnO microstructures via a microwave-assisted hydrothermal method and their gas-sensing property, Ultrason. Sonochem., 21, 1335-1342 (2014). https://doi.org/10.1016/j.ultsonch.2014.02.007
  2. Z. Zhu, D. Yang, H. Liu, Microwaveassisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances, Adv. Powedr. Technol., 22, 493-497 (2011). https://doi.org/10.1016/j.apt.2010.07.002
  3. Q. Li, H. Li, R. Wang, G. Li, H. Yang, R. Chen, Controllable microwave and ultrasonic wave combined synthesis of ZnO micro-/nanostructures in HEPES solution and their shape-dependent photocatalytic activities, J. Alloy. Compd., 567, 1-9 (2013). https://doi.org/10.1016/j.jallcom.2013.03.077
  4. Y. V. Kaneti, Z. Zhang, J. Yue, Q. M. D. Zakaria, C. Chen, X. Jiang, A. Yu, Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: experimental and theoretical studies, Phys. Chem. Chem. Phys., 16, 11471-11480 (2014). https://doi.org/10.1039/c4cp01279h
  5. J. Sun, S. Dong, Y. Wang, S. Sun, Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst, J. Hazard. Mater., 172, 1520-1526 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.022
  6. L. Liu, M. Ge, H. Liu, C. Guo, Y. Wang, Z. Zhou, Controlled synthesis of ZnO with adjustable morphologies from nanosheets to microspheres, Colloid. Surface. A., 348, 124-129 (2009). https://doi.org/10.1016/j.colsurfa.2009.07.003
  7. A. Phuruangrat, T. Thongtem, S. Thongtem, Controlling morphologies and growth mechanism of hexagonal prisms with planar and pyramid tips of ZnO micro flowers by microwave radiation, Ceram. Int., 40, 9069-9076 (2014). https://doi.org/10.1016/j.ceramint.2014.01.120
  8. N. Mostafa, Z. Heiba, M. Ibrahim, Structure and optical properties of ZnO produced from microwave hydrothermal hydrolysis of tris(ethylenediamine)zinc nitrate complex, Molcul. Struc., 1079, 480-485 (2015). https://doi.org/10.1016/j.molstruc.2014.09.059
  9. N. Predan, M. Enculescu, I. Enculescu, Polysaccharide-assisted crystallization of ZnO micro/nanostructures, Mater. Lett., 115, 256-260 (2014). https://doi.org/10.1016/j.matlet.2013.10.081
  10. N. F. Hamedani, A. R. Mahjoub, A. A. Khodadadi, Y. Mortazavi, Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, $CH_4$ and ethanol, Sensor. Actuator., 156, 737-742 (2011). https://doi.org/10.1016/j.snb.2011.02.028
  11. J. Ma, J. Liu, Y. Bao, Z. Zhu, X. Wang, J. Zhang, Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property, Ceram. Int., 39, 2803-2810 (2013). https://doi.org/10.1016/j.ceramint.2012.09.049
  12. T. Thongtem, A. Phuruangrat, S. Thongterm, Characterization of nanostructrured ZnO Produced by microwave irradiation, Ceram. Int., 36, 257-262 (2010). https://doi.org/10.1016/j.ceramint.2009.07.027
  13. N. Kiomarsipourn, R. Fazavi, Hydrothermal synthesis of ZnO nanopigments with high UV absorption and vis/ NIR reflectance, Ceram. Int., 40, 11261-11268 (2014). https://doi.org/10.1016/j.ceramint.2014.03.178
  14. Y. Zhoun, C. Liu, X. Zhong, H. Wu, M. Li, L.Wang, Simple hydrothermal preparation of new type of sea urchin-like hierarchical ZnO micro/nanostructures and their formation mechanism, Ceram. Int., 40, 10415-10421 (2014). https://doi.org/10.1016/j.ceramint.2014.03.012
  15. Z. Chen, L. Gao, A facile route to ZnO nanorod arrays using wet method, J. Cryst. Growth., 293, 522-527, (2006). https://doi.org/10.1016/j.jcrysgro.2006.05.082
  16. S. Liang, L. Zhu, G. Gai, Synthesis of morphology-controlled ZnO microstructures via a microwave-assisted hydrothermal method and their gas-sensing property, Ultrason. Sonochem., 21, 1335-1342 (2014). https://doi.org/10.1016/j.ultsonch.2014.02.007
  17. R. Al-Gaashani, S. Radiman, A.R. Daud, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods, Ceram. Int., 39, 2283-2292 (2013). https://doi.org/10.1016/j.ceramint.2012.08.075
  18. Q. Sun, Y. Wang, X. Yuan, Comparative studies on the structural and luminescent properties of ZnO micro and nanostructures prepared by different hydrothermal growth, Superlattice. Microst., 64, 535-542 (2013). https://doi.org/10.1016/j.spmi.2013.10.013
  19. S. M. Lee, Ethylenediamine as a Promising and Biodegradable Chelating Agent in Growth of Plant Under Zinc Stress, Korean. J. Enviro. Agr., 29, 115-119 (2010). https://doi.org/10.5338/KJEA.2010.29.2.115
  20. B. H. Yoon, Y. S. Kim, K. H. Choi, Effect of ethanolamine species on paper aging by metals, J. Korea. TAPPI., 40, No. 3 (2008).