DOI QR코드

DOI QR Code

Measurement of Wax Appearance Temperature Using Image Processing

영상 처리기법을 이용한 오일의 왁스생성온도 측정

  • Hwang, Soon-Hye (Department of Energy and Resources Engineering, Korea Maritime and Ocean University) ;
  • Kang, Pan-Sang (Department of Energy and Resources Engineering, Korea Maritime and Ocean University) ;
  • Lim, Jong-Se (Department of Energy and Resources Engineering, Korea Maritime and Ocean University)
  • 황순혜 (한국해양대학교 에너지자원공학과) ;
  • 강판상 (한국해양대학교 에너지자원공학과) ;
  • 임종세 (한국해양대학교 에너지자원공학과)
  • Received : 2016.01.07
  • Accepted : 2016.02.29
  • Published : 2016.03.31

Abstract

When the oil is produced in the low temperature environment, wax can be accumulated in petroleum production system(pipeline, riser) and causes problems such as pipeline stucking, disturbance of the oil production. These problems can be lead to time-consuming and economic losses for flow assurance. For prediction and mitigation of wax deposition, it is necessary to measure the Wax Appearance Temperature(WAT) which is a temperature when the wax crystals start to be formed. WAT standard measurement method of transparent oil has to determine the cloud point of sample to the naked eye and cannot be applied to continuous change of the temperature. In this study, wax behavior of transparent oil samples are recorded depending on temperature using Visualized WAT Measurement System. Also, WATs of transparent oil samples are measured by image processing and compared with the result of the standard method.

저온환경에서 석유생산이 이루어질 경우 유동관, 라이저와 같은 석유생산시스템 내에서 온도에 민감한 왁스 고형물이 빈번히 집적되어 석유 이송을 방해하거나 배관을 막아 유동안정성 확보를 위한 시간 소모와 경제적 손실이 발생할 수 있다. 이러한 왁스 집적 문제를 제어하기 위해 오일 내 왁스가 처음 석출되기 시작하는 온도인 왁스생성온도를 사전에 파악하는 것이 중요하다. 기존 왁스생성온도 표준측정법은 왁스결정 석출로 인하여 변하는 시료의 혼탁도를 육안으로 확인하는 한계가 있으며, 오일의 연속적인 온도변화를 측정하기 어려워 정확도가 낮다. 이 연구에서는 오일의 왁스생성온도를 정확하게 측정하고자 왁스생성온도 측정 가시화 실험시스템을 통해 시간에 따라 온도를 감소시키며 왁스생성거동을 촬영하였다. 또한 영상 처리기법으로 투명 오일시료의 명도변화를 분석하여 왁스생성온도를 측정하였으며, 이를 표준측정법의 결과와 비교분석하였다.

Keywords

References

  1. Lee, H.S.: "Computational and Rheological Study of Wax Deposition and Gelation in Subsea Pipelines", PhD thesis, The University of Michigan, U.S.A, (2008).
  2. Brown, T.S., Niesen, V.G. and Erickson, D.D.: "The Effects of Light Ends and High Pressure on Paraffin Formation", SPE paper 28505 presented at the 69th SPE Annual Technical Conference and Exhibition held in New Orleans, U.S.A., Sep. 25- 28, (1994).
  3. Lim, J.S., Kang, P.S., and Yu, S.R.: "Flow Assurance Technologies for Mitigating Wax Deposition in Subsea Petroleum Production System", J. of the Korean Society of Mineral and Energy Resources Engineers, Vol. 50, No. 2, pp. 278-296, (2013). https://doi.org/10.12972/ksmer.2013.50.2.278
  4. Lim, J.S., Back, S.Y., Kang, P.S., Yu, S.R., Kim, H.S., and Park, J.H.: "Wax Appearance Temperature Measurement of Opaque Oil for Flow Assurance in Subsea Petroleum Production System", J. of the Korean Society of Marine Engineering, Vol. 36, No. 1, pp. 185-194, (2012). https://doi.org/10.5916/jkosme.2012.36.1.185
  5. Nghiem, L.X., Kohse, B.F., Fanchi, J.R., and Lake, L.W.: "Petroleum Engineering Handbook : Volume I General Engineering", SPE, Texas, U.S.A. pp. 397-453, (2006).
  6. Sadeghazad, A., and Christiansen, R.L.: "The Effect of Cloud Point Temperature on Wax Deposition", SPE paper 49467 presented at 8th Abu Dhabi International Petroleum Exhibition and Conference held in Abu Dhabi, U.A.E., Oct. 11-14, (1998).
  7. American Society for Testing and Materials: "ASTM D2500 Standard Test Method for Cloud Point of Petroleum Products", Book of ASTM Standards, (2011).
  8. Jung, S.Y., Kang, P.S., and Lim, J.S.: "An Experimental Study on the Effects of Internal Tubular Coatings on Mitigating Wax Deposition in Offshore Oil Production", International Society of Offshore and Polar Engineers, Vol. 38, No. 10, pp. 133-1339, (2014).