DOI QR코드

DOI QR Code

Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane-based Silica Aerogels by Two-step Sol-gel Process

  • Mahadik, D.B. (Department of Materials Science and Engineering, Yonsei University) ;
  • Jung, Hae-Noo-Ree (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Yoon Kwang (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Kyu-Yeon (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2016.03.22
  • Accepted : 2016.03.29
  • Published : 2016.03.30

Abstract

The flexible and superhydrophobic properties of silica aerogels are extremely important material for thermal insulation and oil spill cleanup applications for their long-term use. Flexible silica aerogels were synthesized by using a two-step sol-gel process with precursors, methyltrimethoxysilane (MTMS) followed by supercritical drying. Silica aerogels were prepared at different molar ratio of methanol to MTMS (M). It was observed that the silica aerogels prepared at M=28 were monolithic but inelastic in nature, however, for M=35, the obtained aerogels were monolithic, elastic in nature with less shrinkage. The microstructural studies were carried out using scanning electron microscopy and surface area measurements. The hydrophobicity was confirmed by Fourier transform Infrared spectroscopy and water contact angle measurements. The detailed insight mechanism for flexible nature of silica aerogels and hydrophobic behavior were studied.

Keywords

References

  1. M. A. Aegerter, N. Leventis, and M. Koebel, Aerogels Handbook, Springer, New York (2011).
  2. A. V. Rao, S. D. Bhagat, H. Hirashima, and G. M. Pajonk, "Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor", J. Colloid and Interface Sci., 300(1), 279 (2006). https://doi.org/10.1016/j.jcis.2006.03.044
  3. G. C. Bond and S. Flamerz, "Structure and reactivity of titania- supported oxides. Part 3: reaction of isopropanol over vanadia-titania catalysts", Appl. Catal., 33, 219 (1987). https://doi.org/10.1016/S0166-9834(00)80594-1
  4. T. M. Tillotson and L. W. Hrubesh, "Transparent ultralowdensity silica aerogels prepared by a two-step sol-gel process", J. Non-Cryst. Solids, 145, 44 (1992). https://doi.org/10.1016/S0022-3093(05)80427-2
  5. D. Y. Nadargi, S. S. Latthe, H. Hirashima, and A. V. Rao, "Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels", Microporous Mesoporous Mater., 117, 617 (2009). https://doi.org/10.1016/j.micromeso.2008.08.025
  6. J. P. Randall, M. A. B. Meador, and S. C. Jana, "Polymer reinforced silica aerogels: effects of dimethyldiethoxysilane and bis(trimethoxysilylpropyl)amine as silane precursors", J. Mater. Chem. A, 1, 6642 (2013). https://doi.org/10.1039/c3ta11019b
  7. J. S. Lee, J. H. Yim, and Y. S. Ko, "Immobilization Metallocene Inside Surface-functionalized Nanopore of Micelle-Templated Silica and its Ethylene Polymerization", J. Microelectron. Packag. Soc., 36(1), 111 (2012).
  8. D. Y. Han, J. H. Park, Y. J. Lee, J. H. Lee, S. R. Kim, and Y. H. Kim, "Synthesis and Characterization of Methyltriphenylsilane for SiOC(-H) Thin Film", J. Microelectron. Packag. Soc., 20(11), 600 (2010).
  9. A. Fidalgo, J. P. S. Farinha, J. M. G. Martinho, and L. M. Ilharco, "Flexible hybrid aerogels prepared under subcritical conditions", J. Mater. Chem. A, 1, 12044 (2013). https://doi.org/10.1039/c3ta12431b
  10. D. B. Mahadik, A. V. Rao, A. P. Rao, P. B. Wagh, S. V. Ingale, and S. C. Gupta, "Effect of concentration of trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ) silylating agents on surface free energy of silica aerogels", J. Colloid Interface Sci., 356, 298 (2011). https://doi.org/10.1016/j.jcis.2010.12.088
  11. D. P. Mohite, S. Mahadik-Khanolkar, H. Luo, H. Lu, C. S. Leventis, and N. Leventis, "Polydicyclopentadiene aerogels grafted with PMMA: II. Nanoscopic characterization and origin of macroscopic deformation", Soft Matter, 9, 1531 (2013). https://doi.org/10.1039/C2SM27606B
  12. L. A. Capadona, M. A. B. Meador, A. Alunni, E. F. Fabrizio, P. Vassilaras, and N. Leventis, "Flexible, low-density polymer crosslinked silica aerogels", Polymer, 47, 5754 (2006). https://doi.org/10.1016/j.polymer.2006.05.073
  13. M. S. Kavale, D. B. Mahadik, V. G. Parale, P. B. Wagh, S. C. Gupta, A. V. Rao, and H. C. Barshilia, "Optically transparent, superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent", Appl. Surf. Sci., 258, 158 (2011). https://doi.org/10.1016/j.apsusc.2011.08.023
  14. A. P. Rao, A. V. Rao, and G. M. Pajonk, "Hydrophobic and Physical Properties of the Two Step Processed Ambient Pressure Dried Silica Aerogels with Various Exchanging Solvents", J. Sol-Gel Sci. Technol., 36, 285 (2005). https://doi.org/10.1007/s10971-005-4662-1
  15. Y. Duan, S. C. Jana, A. M. Reinsel, B. Lama, and M. P. Espe, "Surface Modification and Reinforcement of Silica Aerogels Using Polyhedral Oligomeric Silsesquioxanes", Langmuir, 28(43), 15362 (2012). https://doi.org/10.1021/la302945b
  16. W. C. Li, A. H. Lu, and S. C. Guo, "Control of Mesoporous Structure of Aerogels Derived from Cresol-Formaldehyde", J. Colloid Interface Sci., 254, 153 (2002). https://doi.org/10.1006/jcis.2002.8573
  17. L. Zhong, X. Chen, H. Song, K. Guoa, and Z. Hu, "Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane", New J. Chem., 39, 7832 (2015). https://doi.org/10.1039/C5NJ01477H
  18. H. Maleki, L. Duraes, and A. Portugal, "Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications", Microporous Mesoporous Mater., 197, 116 (2014). https://doi.org/10.1016/j.micromeso.2014.06.003

Cited by

  1. Flexible and Transparent Silica Aerogels: An Overview vol.54, pp.3, 2017, https://doi.org/10.4191/kcers.2017.54.3.12
  2. Characterization of Mechanical Property Change in Polymer Aerogels Depending on the Ligand Structure of Acrylate Monomer vol.23, pp.3, 2016, https://doi.org/10.6117/kmeps.2016.23.3.015
  3. Spin-coated polymer composite hydrophobic surfaces with self-cleaning performance vol.6, pp.7, 2016, https://doi.org/10.1088/2053-1591/ab129c
  4. Porous한 물유리 기반 실리카 중공 미세구 형성에 대한 계면활성제 농도의 영향 vol.28, pp.4, 2021, https://doi.org/10.6117/kmeps.2021.28.4.079