DOI QR코드

DOI QR Code

액적의 구름저항에 대한 정접촉각 및 거칠기의 영향

Effects of Static Contact Angle and Roughness on Rolling Resistance of Droplet

  • 조원경 (부산대학교 광메카트로닉스공학과) ;
  • 조상욱 (부산대학교 인지메카트로닉스공학과) ;
  • 김두인 (부산대학교 BK21+나노융합인지메카트로닉스공학 사업단) ;
  • 김대업 (한국생산기술연구원 전북지역본부 탄소경량소재응용그룹) ;
  • 정명영 (부산대학교 광메카트로닉스공학과)
  • Cho, Won Kyoung (Department of Opto-Mechatronics Engineering, Pusan National University) ;
  • Cho, Sang Uk (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, Doo-In (BK21+Nano-integrated Cognomechatronics Engineering, Pusan National University) ;
  • Kim, Dae-Up (Carbon & Light Materials Application R&D Gropu, KITECH) ;
  • Jeong, Myung Yung (Department of Opto-Mechatronics Engineering, Pusan National University)
  • 투고 : 2016.03.14
  • 심사 : 2016.03.25
  • 발행 : 2016.03.30

초록

본 연구에서는 소수성 구현을 위한 표면 거칠기가 접촉각과 접촉각 이력에 미치는 영향을 평가하였다. 초발수 특성을 극대화하기 위해, 액적이 이동하기 위해 필요한 구름저항력을 제안하였으며, 이에 대한 평가를 통하여 표면에 형성한 패턴이 접촉각 이력 및 구름저항력에 큰 영향을 주는 것을 확인하였다. 초발수 특성이 요구되는 실제 응용을 위해서는 액적의 이동에 필요한 에너지를 최소화하기 위하여 접촉각을 극대화하고 동시에 접촉각 이력을 최소화하기 위한 표면 패턴 형상의 최적화가 요구됨을 확인하였다.

In this study, the effects of the contact angle (CA) and contact angle hyteresis (CAH) of planar and nano-patterned surfaces on rolling resistance of water droplet were studied. Based on the investigation on the CAH of water droplet on surfaces with various static wettability, it was found that the rolling resistance coefficient of water droplet is highly influenced by the surface pattern as well as CAH. The observed results suggest that the optimal surface patterns should be designed in order to minimize the rolling resistance of water droplet for the practical applications where superhydrophocitiy is required.

키워드

참고문헌

  1. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang and D. Zhu, "Super-hydrophobic surfaces: from natural to artificial", Adv. Mater., 14(24), 1857 (2002). https://doi.org/10.1002/adma.200290020
  2. X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang and L. Jiang, "The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography", Adv. Mater., 19(17), 2213 (2007). https://doi.org/10.1002/adma.200601946
  3. H. Yang and P. Jiang, "Self-cleaning diffractive macroporous films by doctor blade coating", Langmuir, 26(15), 12598 (2010). https://doi.org/10.1021/la1021643
  4. T. Ishizaki and M. Sakamoto, "Facile formation of biomimetic color-tuned superhydrophobic magnesium alloy with corrosion resistance", Langmuir, 27(6), 2375 (2011). https://doi.org/10.1021/la1051029
  5. L. Mishchenko, B. Hatton, V. Bahadur, J. A. Taylor, T. Krupenkin and J. Aizenberg, "Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets", ACS Nano, 4(12), 7699 (2010). https://doi.org/10.1021/nn102557p
  6. Y.-L. Zhang, J.-N. Wang, Y. He, Y. He, B.-B. Xu, S. Wei and F.-S. Xiao, "Solvothermal synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces", Langmuir, 27(20), 12585 (2011). https://doi.org/10.1021/la2018264
  7. Y.-L. Zhang, H. Xia, E. Kim and H.-B. Sun, "Recent developments in superhydrophobic surfaces with unique structural and functional properties", Soft Matter, 8(44), 11217 (2012). https://doi.org/10.1039/c2sm26517f
  8. X.-M. Li, D. Reinhoudt and M. Crego-Calama, "What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces", Chem. Soc. Rev., 36, 1350 (2007). https://doi.org/10.1039/b602486f
  9. M. Ma and R. M. Hill, "Superhydrophobic surfaces", Curr. Opin. Colloid Interface Sci., 11(4), 193 (2006). https://doi.org/10.1016/j.cocis.2006.06.002
  10. H. Lim, J. Park and W. Kim, "Micro/nanostructured superhydrophobic surface (in Kor.)", Elastomers and Composites, 44(3), 244 (2009).
  11. B. Dean and B. Bhushan, "Shark-skin surfaces for fluid-drag reduction in turbulent flow: a Review", Phil. Trans. R. Soc. A, 368, 4775 (2010). https://doi.org/10.1098/rsta.2010.0201
  12. J.-G. Park, N.-G. Cha, H.-J. Shin and J.-H. Park, "Characterization of fluorocarbon thin films by contact angle measurements (in Kor.)", J. Microelectron. Packag. Soc., 6(1), 39 (1999).
  13. A.-M. Yu, N. Kang, K. Lee and J.-H. Lee, "Effects of nanosized diamond on wettability and interfacial reaction for immersion Sn plating", J. Microelectron. Packag. Soc., 17(3), 59 (2010).
  14. H. Teisala, M. Tuominent, M. Aromaa, M. Stepen, J. M. Makela and J. J. Saarinen, "Nanostrctures increase water droplet adhesion on hierarchcially rough superhydrophobic surfaces", Langmuir, 28(6), 3138 (2012). https://doi.org/10.1021/la203155d
  15. T. Young, "An essay on the cohesion of fluids", Philos. Trans. R Soc. Lond., 95, 65 (1805). https://doi.org/10.1098/rstl.1805.0005
  16. R. E. Johnson Jr and R. H. Dettre, "Contact angle hysteresis. III. Study of an idealized heterogeneous surface", J. Phys. Chem., 68(7), 1744 (1964). https://doi.org/10.1021/j100789a012
  17. M. Ruths, A. D. Berman and J. N. Israelachvili, "Surface forces and nanorheology of molecularly thin films", in Nanotribology and Nanomechanics, B. Bhushan Eds., pp. 417-515. Springer, Berlin Heidelberg (2008).
  18. B. Bhushan, M. Nosonovsky and Y. C. Jung, "Towards optimization of patterned superhydrophobic surfaces", J. R. Soc. Interface, 4, 643-648 (2007). https://doi.org/10.1098/rsif.2006.0211
  19. L. S. Levitov, '"Van der Waals' friction", Europhys. Lett., 8(6), 499 (1989). https://doi.org/10.1209/0295-5075/8/6/002
  20. R. N. Wenzel, "Resistance of solid surfaces to wetting by water", Ind. Eng. Chem. Res., 28(8), 988 (1936). https://doi.org/10.1021/ie50320a024
  21. A. B. D. Cassie and S. Baxter, "Wettability of porous surfaces", Trans. Faraday Soc., 40, 546 (1944). https://doi.org/10.1039/tf9444000546

피인용 문헌

  1. Effects of Demolding Temperature on Formability and Optical Properties of Anti-reflective Nanostructure vol.23, pp.2, 2016, https://doi.org/10.6117/kmeps.2016.23.2.091
  2. A Study on the Effects of Surface Patterns on Droplet Impingement Behaviors vol.23, pp.4, 2016, https://doi.org/10.6117/kmeps.2016.23.4.107
  3. 고분자 나노 표면의 내스크래치 특성 향상 연구 vol.24, pp.3, 2017, https://doi.org/10.6117/kmeps.2017.24.3.041
  4. 광 증폭용 플라즈모닉 나노구조 제작을 위한 은 나노입자 증착 연구 vol.25, pp.1, 2018, https://doi.org/10.6117/kmeps.2018.25.1.011
  5. 열처리와 복합구조화를 통한 디스플레이용 기능성 고분자 필름의 내구성 향상 연구 vol.25, pp.4, 2016, https://doi.org/10.6117/kmeps.2018.25.4.047
  6. Deformation Analysis of Roll Mold for Nano-flexible Devices vol.28, pp.4, 2021, https://doi.org/10.6117/kmeps.2021.28.4.047