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Abstract

Recently, artificial intelligence has reached the level of top information technologies that will
have significant influence over many aspects of our future lifestyles. In particular, in the fields
of machine learning technologies for classification and decision-making, there have been a
lot of research efforts for solving estimation and control problems that appear in the various
kinds of portfolio management problems via data-driven approaches. Note that these modern
data-driven approaches, which try to find solutions to the problems based on relevant empirical
data rather than mathematical analyses, are useful particularly in practical application domains.
In this paper, we consider some applications of modern data-driven machine learning methods
for portfolio management problems. More precisely, we apply a simplified version of the
sparse Gaussian process (GP) classification method for classifying users’ sensitivity with
respect to financial risk, and then present two portfolio management issues in which the GP
application results can be useful. Experimental results show that the GP applications work
well in handling simulated data sets.
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1. Introduction

Recently, artificial intelligence has reached the level of top information technologies that
will have significant influence over many aspects of our future lifestyles. In particular, in the
fields of machine learning technologies for classification and decision-making, there have
been a lot of research efforts for solving estimation and control problems that appear in
the various kinds of portfolio management problems via data-driven approaches. Note that
these modern data-driven arpproaches, which try to find solutions to the problems based on
relevant empirical data rather than mathematical analyses, are useful particularly in practical
application domains.

In this paper, we consider the problem of applying kernel methods together with some
other optimization methods for portfolio management. As well-known, kernel methods have
attracted great interests in the areas of pattern classification, function approximation, and
anomaly detection [1–9], and recently Gaussian process played an important role in the field
of machine learning as a tool for probabilistic kernel methods [10]. We apply a simplified
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version of the sparse Gaussian process (GP) classification method,
which is a direct result of two recent remarkable Gaussian pro-
cess papers [25, 26], for performing risk sensitivity classifica-
tion in dealing with financial portfolio management. Since port-
folio management problems are optimal decision-making prob-
lems that rely on actual empirical data, theoretical and practical
solutions can be formulated via many of recent machine learn-
ing and control advancements: the traditional mean-variance
efficient portfolio problem [11]; index tracking portfolio for-
mulation [12–15]; risk-adjusted expected return maximizing
strategy [16–18]; trend following strategy [19–23]; long-short
trading strategy (including the pairs trading strategy) [20, 24],
etc. In this paper, we also raise two important portfolio manage-
ment issues in which the GP application results can be useful.

This paper is organized as follows: In Section 2, we briefly
describe relevant GP preliminaries. Applying a simplified ver-
sion of the sparse Gaussian process (GP) classification method
for performing risk sensitivity classification as well as their pos-
sible applications to portfolio management issues are presented
in Section 3. Finally, in Section 4, we present our concluding
remarks.

2. Preliminaries

Probabilistic kernel methods, which include Gaussian processes,
have recently attracted great interests in the areas of pattern clas-
sification, function approximation, and anomaly detection. In
this section, we briefly describle some preliminaries on Gaus-
sian processes, which plays an important role in our portfolio
management applications. For more details on the Gaussian
processes, please refer to, e.g., [10]. Gaussian process, {f(x)},
is an indexed family of random variables with index x ∈ Rd

such that for any finite indices, x1, · · · , xN , f(x1), · · · , f(xN )

are jointly Gaussian. Gaussian processes can be characterized
by their mean functions and covariance (or kernel) functions,
which are defined as follows, respectively:

m(x) = E[f(x)], (1)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (2)

Gaussian processes with mean function m(x) and covariance
function k(x, x′) are often denoted by

f(x)∼GP (m(x), k(x, x′)). (3)

One can see that with the so-called kernel trick, Bayesian linear
models defined on the feature space can be viewed as Gaussian

processes. More specifically, let’s suppose that f(x) is de-
scribed by φ(x)Tw, where the prior distribution of the random
vector w is N(0,Σw). Here, φ(x) is the feature vector, which
is the result of mapping the input vector x into the (possiably
high-dimensional) feature space F . Note that in this situation,
the expectation of f(x) is

E[f(x)] = E[φ(x)Tw] = φ(x)TE[w] = 0, (4)

and the covariance between f(x) and f(x′) satisfies

E[f(x)f(x′)] = E[φ(x)TwwTφ(x′)]

= φ(x)TE[wwT ]φ(x′) = φ(x)T Σwφ(x′).

(5)

Thus defining the kernel function, k, by the kernel trick

k(x, x′) = φ(x)Σwφ(x′) (6)

enables us to compute the covariance, Cov[f(x), f(x′)], di-
rectly on the input space using the kernel, i.e., Cov[f(x), f(x′)] =

k(x, x′). Therefore, k can be conveniently interpreted as both a
kernel function (in the sense of kernel methods) and a covari-
ance function. In general, the mean function, m(x), is assumed
to be the zero function, and the assumption is thought to be
without loss of generality. The task of obtaining the predictive
distribution for any test point in the Gaussian process frame-
work can be summarized as follows: Consider the training data
set D = {(xn, yn)}Nn=1, where X = {xn ∈ Rd}Nn=1 is the set
of the input values of the training data, and y = {yn ∈ Rd}Nn=1

is the set of the corresponding target values. Since the Gaus-
sian process f(x) has the zero mean function and the kernel
function, k(x, x′), the joint distribution of the random vector
f = [f(x1), · · · , f(xN )]T can be written as

p(f |X) = N(f |0,K(X)). (7)

Here by N(f |m,V ), we mean the multi-variate Gaussian dis-
tribution with mean vector m and covariance matrix V . Also,
K(X) is anN×N matrix, whose (i, j)-th element is k(xi, xj).
For notational convenience, we often use K instead of K(X).
In this paper, we consider the following squared exponential
(SE) kernel, which is one of the most widely used choices in
the kernel method community:

k(xi, xj) = σ2
f exp[− 1

2l2
(xi − xj)T (xi − xj)]. (8)
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Here σf and l, which charaterize the shape of the kernel func-
tion, are called hyper-parameters, and the vector consisting of
hyper-parameters is denoted as θ. In the Gaussian process re-
gression, the disturbance which occurs in the process of the data
observation is taken into account too, and it is characterized by
means of a Gasussian noise model:

p(y|f) = N(y|f, σ2
nI). (9)

Hence, by combining p(f |X) and p(y|f), one can obtain the
following marginal likelihood for the regression problem: p(y|X) =

N(y|0,K + σ2
nI). Also, the log marginal likelihood for the

whole training data D can be written as follows:

log p(y|X) = −1

2
yT (K + σ2

nI)−1y

−1

2
log |K + σ2

nI| −
N

2
log(2π). (10)

Finding the optimal hyper-parameter vector can be achieved by
maximizing the above log marginal likelihood function with
respect to θ. Also, the predictive distribution of the ouput
y∗ for the test input point x∗ can be obtained by applying
the conditional density formula for the multi-variate Gaussian
distributions [10], i.e.,

p(y∗|x∗, D) = N(y∗|kT∗ (K + σ2
nI)−1y,

k∗∗ − kT∗ (K + σ2
nI)−1k∗ + σ2

n). (11)

Here, k∗ and k∗∗ are used for notational convenience, and they
mean the following, respectively:

k∗ = [k(x1, x∗), · · · , k(xn, x∗)]
T , (12)

k∗∗ = k(x∗, x∗). (13)

Finally, note that the point esimate kT∗ (K + σ2
nI)−1y, which is

the mean of y∗, can be further written as

ŷ∗ =

N∑
i=1

αik(xi, x∗), (14)

where α = [α1, · · · , αN ]T = (K+σ2
nI)−1y, and that (14) can

be viewed as a result of the representer theorem [1–3] of the
kernel methods.

3. Applications

In this section, we present some observations for portfolio man-
agement applications of Gaussian processes, natural evolution

strategy, and Hamilton-Jacobi-Bellman (HJB) equations. Our
observations consist of two parts. In the first part, we consider
the applicability of a simplified sparse Gaussian process clas-
sification (GPC) method, which is a direct result of two recent
remarkable Gaussian process papers [25, 26], for the task of
classifying individuals’ sensitivity with respect to financial risk.
Derivation of the simplified sparse GPC method can be summa-
rized as follows: We consider the input data set X = {xn}Nn=1

together with the target data set Y = {yn}Nn=1, where xn ∈ Rd

and yn ∈ {1, · · · , C}. Note that the n-th observation, yn, is
a categorical variable that can be transformed into the one-
hot-encoding format. Also, note that for the observation yn,
one can use a multinomial distribution whose probabilities are
defined by softmax having intensities fn = (fn1, · · · , fnC).
The k-th intensity of fn, fnk, is the ouput of the Gaussian pro-
cess Fk(xn). To achieve a sparse representation, the so-called
inducing points, Z ∈ RM×d, are introduced. Note that in clas-
sification problems, the marginal log-likelihood is not tractable,
contrary to the case of Gaussian process regression of Section
2. Hence, we need to rely on a variational approximation. With
q(f, U) = q(U)p(f |X,U) and Jensen’s inequality [10], we
have

log p(Y ) = log

∫
p(U)p(f |X,U)p(Y |f)dfdU

≥
∫
q(U)p(f |X,U) log

p(U)p(f |X,U)p(Y |f)

q(U)p(f |X,U)
dfdU

= −KL[q(U) ‖ p(U)]

+

N∑
n=1

∫
q(U)p(fn|xn, U) log p(yn|fn)dfndU, (15)

where KL stands for Kullback-Leibler divergence [10]. Note
that with q(U) = N(U |m,S), we have

p(fn|xn, U) =

C∏
k=1

N(fnk|aTnuk, bn), (16)

where an = K−1MMKMn, bn = Knn −KnMK
−1
MMKMn. In

this paper, we consider the class of diagonal covariance matrices
for S and called the resultant GPC a simplified sparse Gaus-
sian process classification. Since the integration of log p(yn|fn)

in the right hand side of (15) is not tractable, we rely on the
sampling-based approximation of [27, 28]. In this paper, we
propose to use the simplified sparse GPC as a framework of clas-
sifying users’ sensitivity with respect to financial risk. The cate-
gorical target variable in the framework describes the sensitivity
level (e.g., very sensitive to risk, moderately sensitive to risk,
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only a little sensitive to risk, etc). The questions for providing
inputs along the line may include the following kinds [32–35]:

1. What is your current age and planned age of retirement?

2. Your annual before-tax income is $ .

3. Your future income until your retirement will be .

(a) Increasing

(b) The same

(c) Decreasing

(d) Unpredictable

4. Total value of your cash and other liquid securities is $
.

5. Your investment horizon is years.

6. Your primary investment objective is .

(a) Investing for comfortable retirement

(b) General investing for wealth accumulation

(c) Securing an emergency fund

(d) Saving for a specific purpose (for example college
education for kids)

7. Your tolerance for risk taking when investing is .

(a) Defensive - You accept lower returns to protect your
initial investment.

(b) Moderate - You want balance between the stability
and long-term return.

(c) Assertive - You are prepared to accept higher volatil-
ity to accumulate assets over long term.

8. If your entire investment portfolio lost 10% of its value
in a month during a market decline, what would you do?

(a) Liquidate all the investment

(b) Sell half of the portfolio

(c) Keep the portfolio

(d) Invest more

9. What return do you expect to achieve from your invest-
ments?

(a) Return without losing original money

(b) 3-6% per annum

-4 -2 0 2 4 6 8
-4

-2

0

2

4

6

8

10
trn data

class 1

class 2

Figure 1. Training data considered for binary classification.
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Figure 2. Classification results of the simplified sparse GPC (with
20 inducing points).

(c) 7-10% per annum

(d) 11-15% per annum

(e) Over 15% per annum

In order to evaluate the validity and strengths of the simlified
sparse GPC method, we performed experiments for the simu-
lated data (see Figs. 1-9). From the classification results, one
can see that the simplified sparse GPC work well with relatively
small number of inducing points. Also, Figs. 2-5 show that the
GPC can achieve sparsity somewhat more efficiently compared
to the standard SVM approach (for which we used fitcsvm of
MATLAB).

In the second part of our observations, we present two port-
folio management issues that can utilize the simplified sparse
GPC method. The issues covered along the line are the trend-
following problem [19, 20, 29] and the portfolio optimization
problem [30]. In the first issue, we consider an exponential
natural evolution strategy (NES) [31] based solution to find
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Figure 3. Classification results of the simplified sparse GPC (with
10 inducing points).
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Figure 4. Classification results of the simplified sparse GPC (with 5
inducing points).
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Figure 5. Classification results of SVM (with 392 support vectors).

an efficent trend following strategy (For details, please refer
to [20, 29]), and propose the strategy of using the transaction
cost, K, as a tuning parameter that can vary according to the
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Figure 6. Training data considered for multi-class classification.
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Figure 7. Classification results of the simplified sparse GPC (with
20 inducing points).
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Figure 8. Classification results of the simplified sparse GPC (with
10 inducing points).

GPC results (Fig. 10). In the second issue, we consider a HJB
equation based portfolio optimization problem [30], where a
user has the choice of investing in the stock market or saving
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Figure 9. Classification results of the simplified sparse GPC (with 5
inducing points).
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Figure 10. Conceptual diagram of the first issue.

in a bank account, the stock market is modelled as geometric
Brownian motion, and dynamics for the factor and the volatility
are also modelled with appropriate stochastic differencial equa-
tions (For details, please refer to [30]), and propose the strategy
of using the coefficient of risk aversion, γ, as a tuning parameter
that can vary according to the GPC results (Fig. 11). We expect
that in our future works, these two issues will ultimately lead
to a set of fundamental building blocks for efficient personal
financial planning packages.

4. Conclusion

Modern data-driven machine learning approaches, which try
to find solutions to the problems based on relevant empirical
data rather than mathematical analyses, are useful particularly
in practical application domains. In this paper, we apply a
simplified version of the sparse Gaussian process (GP) classifi-
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Figure 11. Conceptual diagram of the second issue.

cation method to two portfolio management issues (NES-based
trend-following, HJB-based porfolio optimization). Experimen-
tal results showed the applicability of the simplified sparse GPC
in simulated data sets. For future works, we are planning to
consider more extensive simulation studies, which will show
the strengths and weaknesses of the proposed idea, and applica-
tions of our methods to an integral package that can deal with
personal financial planning problems.

Acknowledgement

This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Tech-
nology (2011-0021188).

References

[1] J. Shawe-Taylor and N. Cristianini, Kernel Methods for
Pattern Analysis, Cambridge University Press, 2004.

[2] N. Cristianini and J. Shawe-Taylor, An Introduction to Sup-
port Vector Machines and Other Kernel-Based Learning
Methods, Cambridge University Press, 2000.
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