DOI QR코드

DOI QR Code

지표수 열교환기의 용량과 적용 효과에 대한 설계 인자의 영향

Impact of Design Parameters on Length and Application Effect of Surface Water Heat Exchanger(SWHE)

  • 손병후 (한국건설기술연구원 건축도시연구소) ;
  • 민경천 (코텍엔지니어링(주) 기술연구소)
  • Sohn, Byonghu (Building and Urban Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Min, Kyong-Chon (Research Development Division, KOTEC Engineering)
  • 투고 : 2015.12.22
  • 심사 : 2016.02.03
  • 발행 : 2016.03.01

초록

본 연구에서는 설계 인자가 지표수 열교환기 길이에 미치는 영향을 분석하였다. 또한 수직 밀폐형 지중열교환기와 지표수 열교환기를 같이 이용한다고 가정한 후, 지중 순환수의 온도 변화를 분석하였다. 지표수 열교환기 출구 온도와 연못 온도의 차이를 크게 하면, 열교환기 파이프 길이는 줄어들었다. 아울러 연못 온도가 높을수록 파이프 길이는 감소하지만, 파이프 바깥지름의 영향은 상대적으로 적었다. 또한 파이프 두께가 얇을수록 전도 열전달에서 열저항의 영향이 감소하기 때문에 파이프 길이는 감소하였다. 수직 밀폐형 시스템에 지표수 열교환기를 추가 적용하면, 지중열교환기 순환수 온도는 시간이 지날수록 감소하였다.

Commercial buildings are generally cooling-dominated and therefore reject more heat to a vertical ground heat exchanger(GHE) than they extract over the annual cycle. Shallow ponds can provide a cost-effective means to balance the thermal loads to the ground and to reduce the length of GHE. The objective of this work has been to develop a design tool for surface water heat exchanger(SWHE) submerged in shallow pond. This paper presents the analysis results of the impact of design parameters on the length of SWHE and its application effect on geothermal heat pump(GHP) system using vertical GHE. In order to analysis, We applied ${\epsilon}-NTU$ method on designing the length of SWHE. Analysis results show that the required pipe length of SWHE was decreased with the increase of approach temperature difference and with the decrease of pipe wall thickness. In addition, when the SWHE was applied to the GHP system, the temperature of vertical GHE was more stable than that of standalone GHE system.

키워드

참고문헌

  1. Lund, J. W. and Boyd, T. L., 2015, "Direct Utilization of Geothermal Energy 2015 Worldwide Review," World Geothermal Congress 2015, Melbourne, Australia.
  2. Sarbu, I. and Sebarchievici, C., 2014, "General Review of Ground-Source Heat Pump Systems for Heating and Cooling of Buildings," Energy and Buildings, Vol. 70, pp. 441-454. https://doi.org/10.1016/j.enbuild.2013.11.068
  3. Kavanaugh, S., 1998, "A Design Method for Hybrid Ground-Source Heat Pump," ASHRAE Transactions, Vol. 104, pp. 691-698.
  4. Kavanaugh, S. and Rafferty, K., 2014, Geothermal Heating and Cooling: Design of Ground-Source Heat Pump Systems, ASHRAE, Atlanta.
  5. McCrary, B. H., Kavanaugh, S. P., and Williamson, D. G., 2006, "Environmental Impacts of Surface Water Heat Pump Systems," ASHRAE Transactions, Vol. 112, pp. 102-110.
  6. Saha, R. K. and Sekulic, D. P., 2003, Fundamentals of Heat Exchanger, John Wiley&Sons, New Jersey.
  7. Rogers, G. F. C. and Mayhew, Y. R., 1964, "Heat Transfer and Pressure Loss in Helically Coiled Tubes with Turbulent Flow," International Journal of Heat and Mass Transfer, Vol. 7, pp. 1207-1216. https://doi.org/10.1016/0017-9310(64)90062-6
  8. Churchill, S. W. and Chu, H. H. S., 1975, "Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder," International Journal of Heat and Mass Transfer, Vol. 18, pp. 1049-1053. https://doi.org/10.1016/0017-9310(75)90222-7
  9. Sohn, B. and Kwon, H. S., 2014, "Performance Prediction on the Application of a Ground-Source Heat Pump(GSHP) System in an Office Building," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 26, No. 9, pp. 409-415. https://doi.org/10.6110/KJACR.2014.26.9.409
  10. DesignBuilder Software, 2011, DesignBuilder V3.0
  11. Gaia Geothermal, 2014, Ground Loop Design-Geothermal Design Studio User's Manual, Gaia Geothermal.