DOI QR코드

DOI QR Code

울진토양에서의 137Cs 및 90Sr 분포

Distributions of 137Cs and 90Sr in the Soil of Uljin, South Korea

  • 송지연 (경북대학교 방사선과학연구소) ;
  • 김완 (경북대학교 방사선과학연구소) ;
  • 맹성진 (경북대학교 건설환경에너지공학부) ;
  • 이상훈 (경북대학교 에너지공학부)
  • Song, JiYeon (Radiation Science Research Institute, Kyungpook National University) ;
  • Kim, Wan (Radiation Science Research Institute, Kyungpook National University) ;
  • Maeng, Seongjin (School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University) ;
  • Lee, Sang Hoon (School of Energy Engineering, Kyungpook National University)
  • 투고 : 2015.07.14
  • 심사 : 2016.02.22
  • 발행 : 2016.03.31

초록

연구배경: 우리나라 표층토양 중 원자력 발전소 주변 지역인 울진군을 중심으로 $^{137}Cs$$^{90}Sr$의 분포 현황을 조사하고, 토양 속 방사성핵종의 행동에 영향을 미치는 변수들과의 상관관계를 밝힘으로써 한국토양에 발생한 $^{137}Cs$$^{90}Sr$의 농도에 대한 기준자료 확보와 원자력시설 주변 환경영향 평가의 강화가 목적이다. 재료 및 방법: 원자력 발전소 인근 10 km이내의 지역 14곳에서 2011년 4월 표층토양 시료를 채취하였으며, 깊이에 따른 분포 조사를 위하여 40 cm 까지의 토양을 덕구, 후정, 매화 지역에서 채취하였다. $^{137}Cs$의 농도는 HPGe 감마분광시스템으로, $^{90}Sr$의 농도는 방사평형상태의 $^{90}Y$을 기체 유동식 비례계수기로 계측하였다. 결과 및 논의: 표층토양에서 $^{137}Cs$의 방사능농도는 $<0.479-39.6Bq{\cdot}(kg-dry)^{-1}$(평균 $7.51Bq{\cdot}(kg-dry)^{-1}$), $^{90}Sr$의 방사능 농도는 $0.209-1.85Bq{\cdot}(kg-dry)^{-1}$(평균 $0.74Bq{\cdot}(kg-dry)^{-1}$)이었다. 방사능비($^{137}Cs/^{90}Sr$)는 9.67로서 전지구적 초기 방사성 낙진의 1.75보다 큰 값을 보였는데, 이는 낙진 이후 $^{90}Sr$의 심층으로의 빠른 이동성 때문이다. 깊이에 따른 분포는, 덕구와 후정의 토양에서 $^{137}Cs$ 의 농도가 표층토양에서 가장 높고 깊이가 증가할수록 급격히 지수적으로 감소하는 경향을 보였으며, $^{90}Sr$의 방사능농도는 표층 및 깊이 30 cm 부근에서 높은 값을 보였다. 표층토양 방사능 농도와 표층토양 변수들(pH, 유기물함량, 입도)과의 선형 핏팅에서는 $^{137}Cs$ 방사능과 유기물함량 사이에 상당한 상관관계(결정계수 $R^2=0.6$)가 있는 것으로 나타났다. 결론: 울진 토양의 $^{137}Cs$$^{90}Sr$의 방사능농도 범위는 한국 다른 지역의 값과 유사함을 확인하였고 $^{137}Cs$ 방사능과 유기물함량 사이에 상당한 상관관계를 확인하였다.

Background: For the purpose of baseline data collection and enhancement of environmental monitoring the distribution studies of $^{137}Cs$ and $^{90}Sr$ in the soil of Uljin province was performed and the relation between surface soil activities and soil properties (pH, TOC and median of the surface soil) was analyzed. Materials and Methods: For 14 spots within 10 km from the NPP surface soil samples were collected and soils for depth profile were sampled for 3 spots in April 2011. Using ${\gamma}$-ray spectrometry with HPGe detector, the concentrations of $^{137}Cs$ were determined and the concentrations of $^{90}Sr$ were measured by counting ${\beta}$-activity of $^{90}Y$ (in equilibrium with $^{90}Sr$) in a gas flow proportional counter. Results and Discussion: The concentration ranges of $^{137}Cs$ and $^{90}Sr$ were $<0.479-39.6Bq{\cdot}(kg-dry)^{-1}$ (avg. $7.51Bq{\cdot}(kg-dry)^{-1}$) and $0.209-1.85Bq{\cdot}(kg-dry)^{-1}$ (avg. $0.74Bq{\cdot}(kg-dry)^{-1}$) which were similar to the reported values from other regions in Korea. The activity ratio of $^{137}Cs$ to $^{90}Sr$ in surface soils was around 9.67, which is much bigger than the initial value of 1.75 for worldwide fallouts because of faster downward movement of $^{90}Sr$ after fallout than that of $^{137}Cs$. For depth profile studies soils were collected down to 40 cm depth for the locations of Deokgu, Hujeong and Maehwa. The $^{137}Cs$ concentration distribution of the first two showed maximum values at top soils and decreased rapidly in exponential manner, while $^{90}Sr$ showed two local maximum values for soils near top and about 30 cm depth. Through linear fittings between the $^{137}Cs$ and $^{90}Sr$ concentrations of surface soil and pH, TOC and median of the surface soil, the only probable relationship obtained was between $^{137}Cs$ and TOC (determination coefficient $R^2=0.6$). Conclusion: The concentration ranges of $^{137}Cs$ and $^{90}Sr$ in Uljin were similar to the reported values from other regions in Korea. The only probable relationship obtained between activities and soil properties was between $^{137}Cs$ and TOC.

키워드

참고문헌

  1. Korea Institute of Nuclear Safety. The annual report on the environmental radiological surveillance and assessment around the nuclear facilities. KINS/AR-140. Daejeon, Republic of Korea. 2010;46-51.
  2. KNS Committee on the Fukushima Accident. Final report on Fukushima NPP accident analysis. Korean Nuclear Society. 2013;60-69.
  3. Cooper JR, Randle K, Sokhi RS. Radioactive releases in the environment. 1st Ed. John Wiley & Sons. 2003;1-24.
  4. Cha HJ, et al. Vertical distribution of $^{137}Cs$ and $^{90}Sr$ activities in the soils of Korea. Journal of Radiation Protection and Research. 2004;29(3):197-204.
  5. Willard HH, Goodspeed EW. Separation of strontium, barium, and lead from calcium and other metals - by precipitation as nitrates. Ind. Eng. Chem. 1936;8(6):414-418.
  6. Korea Institute of Nuclear Safety. Environmental radioactivity survey in Korea. KINS/ER-028. Daejeon, Republic of Korea. 2011;85-86.
  7. Kirchner TB, Whicker FW, Otis MD. PATHWAY: A simulation model of radionuclide-transport through agricultural food chains. Third International Conference on State-of-the Art in Ecological Modeling, Colorado State Univ. Ft. Collins, CO. 1982 May 24-28;10.
  8. Thornthwaite CW, Mather JR, Nakamura JK. Movement of radiostrontium in soils. Science. 1960;131(3406):1015-1019. https://doi.org/10.1126/science.131.3406.1015
  9. Russell RS. Deposition of $^{90}Sr$ and its content in vegetation and in human diet in the United Kingdom. Nature. 1958;182:834-839. https://doi.org/10.1038/182834a0
  10. He Q, Walling DE. Interpreting particle size effects in the adsorption of $^{137}Cs$ and unsupported $^{210}Pb$ by mineral soils and sediments. J. Environ. Radioact. 1996;30(2):117-137. https://doi.org/10.1016/0265-931X(96)89275-7