DOI QR코드

DOI QR Code

Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

  • Kim, Eunjong (Department of Animal Biosystems Science, Chungnam National University) ;
  • Lee, Dong-Hyun (Animal Environment Division, National Institute of Animal Science) ;
  • Won, Seunggun (Department of Animal Resources, College of Life & Environmental Sciences, Daegu University) ;
  • Ahn, Heekwon (Department of Animal Biosystems Science, Chungnam National University)
  • Received : 2015.10.22
  • Accepted : 2015.11.21
  • Published : 2016.05.01

Abstract

Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg $O_2/g$ VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

Keywords

References

  1. Adani, F., C. Ubbiali, and P. Generini. 2006. The determination of biological stability of composts using the dynamic respiration index: the results of experience after two years. Waste Manag. 26:41-48. https://doi.org/10.1016/j.wasman.2005.01.025
  2. Ahn, H. K., J. H. Kim, J. H. Kwag, K. H. Jeong, D. Y. Choi, and Y. H. Yoo. 2011. Sustainable animal waste management and utilization in Korean livestock farms. "Sustainable research management of livestock and poultry wastes for Asian smallscale farmers" International seminar. Food and Fertilizer Technology Center, Ho Chi Minh, Vietnam. 41-46.
  3. Ahn, H. K., T. L. Richard, and T. D. Glanville. 2008a. Laboratory determination of compost physical parameters for modeling of airflow characteristics. Waste Manag. 28:660-670. https://doi.org/10.1016/j.wasman.2007.04.008
  4. Ahn, H. K., T. L. Richard, and T. D. Glanville. 2008b. Optimum moisture levels for biodegradation of mortality composting envelope materials. Waste Manag. 28:1411-1416. https://doi.org/10.1016/j.wasman.2007.05.022
  5. Ahn, H. K., T. J. Saure, T. L. Richard, and T. D. Glanville. 2009. Determination of thermal properties of composting bulking materials. Bioresour. Techonol. 100:3974-3981. https://doi.org/10.1016/j.biortech.2008.11.056
  6. Barrena-Gomez, R. B., F. V. Vazquez Lima, M. G. Bolasell, T. Gea, and A. S. Sanchez-Ferrer. 2005. Respirometric assays at fixed and process temperatures to monitor composting process. Bioresour. Technol. 96:1153-1159. https://doi.org/10.1016/j.biortech.2004.09.026
  7. Barrena-Gomez, R., F. Vazquez-Lima, and F. Sanchez-Ferrer. 2006. The use of respiration indices in the composting process:A review. Waste Manag. Res. 24:37-47. https://doi.org/10.1177/0734242X06062385
  8. Das, K. and H. M. Keener. 1997. Moisture effect on compaction and permeability in composts. J. Environ. Eng. 123:275-281. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:3(275)
  9. de Bertoldi, M., G. Vallini, and A. Pera. 1983. The biology of composting: A review. Waste Manag. Res. 1:157-176. https://doi.org/10.1177/0734242X8300100118
  10. Gea, T., R. Barrena, A. Artola, and A. Sanchez. 2004. Monitoring the biological activity of the composting process: oxygen uptake rate (OUR), respirometric index (RI), and respiratory quotient (RQ). Biotechnol. Bioeng. 88:520-527. https://doi.org/10.1002/bit.20281
  11. Glanville, T. D., H. K. Ahn, T. L. Richard, J. D. Harmon, D. L. Reynolds, and S. Akinc. 2013. Effect of envelope material on biosecurity during emergency bovine mortality composting. Bioresour. Technol. 130:543-551. https://doi.org/10.1016/j.biortech.2012.12.035
  12. Haug, R. T. 1993. Process kinetics and product stability. In: The Practical Handbook of Compost Engineering. Lewis Publishers, Boca Raton, FL, USA. 335-383.
  13. Jeris, J. S. and R. W. Regan. 1973. Controlling environmental parameters for optimum composting. Part II. Compost Sci. 14:8-15.
  14. Komilis, D. and D. Kanellos. 2012. A modified dynamic respiration test to assess compost stability: Effect of sample size and air flowrate. Bioresour. Technol. 117:300-309. https://doi.org/10.1016/j.biortech.2012.04.095
  15. Komilis, D., I. Kontou, and S. Ntougias. 2011. A modified static respiration assay and its relationship with an enzymatic test to assess compost stability and maturity. Bioresour. Technol. 102:5863-5872. https://doi.org/10.1016/j.biortech.2011.02.021
  16. Komilis, D. P. and I. S. Tziouvaras. 2009. A statistical analysis to assess the maturity and stability of six composts. Waste Manag. 29:1504-1513. https://doi.org/10.1016/j.wasman.2008.10.016
  17. Kulcu, R. and O. Yaldiz. 2014. The composting of agricultural wastes and the new parameter for the assessment of the process. Ecol. Eng. 69:220-225. https://doi.org/10.1016/j.ecoleng.2014.03.097
  18. Liang, C., K. C. Das, and R. W. McClendon. 2003. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour. Technol. 86:131-137. https://doi.org/10.1016/S0960-8524(02)00153-0
  19. Li, X. J., R. H. Zhang, and Y. Z. Pang. 2008. Characteristics of dairy manure composting with rice straw. Bioresour. Technol. 99:359-367. https://doi.org/10.1016/j.biortech.2006.12.009
  20. Mabuhay, J. A., N. Nakagoshi, and T. Horikoshi. 2003. Microbial biomass and abundance after forest fire in pine forests in Japan. Ecol. Res. 18:431-441. https://doi.org/10.1046/j.1440-1703.2003.00567.x
  21. Murwira, H. K., H. Kirchmann, and M. J. Swift. 1990. The effect of moisture on the decomposition rate of cattle manure. Plant Soil 122:197-199.
  22. Okutani, T. 2009. Utilization of silica in rice hulls as raw materials for silicon semiconductors. Met. Mater. Miner. 19:51-59.
  23. Ponsa, S., T. Gea, and A. Sanchez. 2010. The effect of storage and mechanical pretreatment on the biological stability of municipal solid wastes. Waste Manag. 30:441-445. https://doi.org/10.1016/j.wasman.2009.10.020
  24. Ponsa, S., E. Pagans, and A. Sanchez. 2009. Composting of dewatered wastewater sludge with various ratios of pruning waste used as a bulking agent and monitored by respirometer. Biosyst. Eng. 102:433-443. https://doi.org/10.1016/j.biosystemseng.2009.01.002
  25. Rahman, S. 1995. Food Properties Handbook. CRC Press, Boca Raton, FL, USA.
  26. Richard, T. L., H. V. M. Hamelers, A. H. M. Veeken, and T. Silva. 2002. Moisture relationships in composting processes. Compost Sci. Util. 10:286-302. https://doi.org/10.1080/1065657X.2002.10702093
  27. Ruggieri, L., T. Gea, M. Mompeo, T. Sayara, and A. Sanchez. 2008. Performance of different systems for the composting of the source-selected organic fraction of municipal solid waste. Biosyst. Eng. 101:78-86. https://doi.org/10.1016/j.biosystemseng.2008.05.014
  28. Sadaka, S. S., T. L. Richard, T. D. Loecke, and M. Liebman. 2004. Determination of compost respiration rates using pressure sensors. ASAE Paper No. 047019. Ottawa, Canada.
  29. Tamura, T. and T. Osada. 2006. Effect of moisture control in piletype composting of dairy manure by adding wheat straw on greenhouse gas emission. Int. Congr. Ser. 1293:311-314. https://doi.org/10.1016/j.ics.2006.02.027
  30. Thompson, W. H., P. D. Millner, M. E. Watson, and P. B. Leege. 2002. Test Methods for the Examination of Composting and Compost (TMECC). USCC (United States Composting Council), Holbrook, NY, USA.
  31. Tremier, A., A. de Guardia, C. Massiani, E. Paul, and J. L. Martel. 2005. A respirometric method for characterizing the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be co-composted. Bioresour. Technol. 96:169-180. https://doi.org/10.1016/j.biortech.2004.05.005
  32. USCC. 2002. TMECC 4.11-A: Test methods for the examination of composting and compost. US Composting Council. Ronkonkonma, NY, USA.
  33. van Ginkel, C. T., P. A. C. Raats, and I. A. van Haneghem. 1999. Bulk density and porosity distributions in a compost pile. Netherlands J. Agric. Sci. 47:105-121.
  34. Wagland, S. T., S. F. Tyrrel, A. R. Godley, and R. Smith. 2009. Test methods to aid in the evaluation of the diversion of biodegradable municipal solid waste (BMW) from landfill. Waste Manag. 29:1218-1226. https://doi.org/10.1016/j.wasman.2008.08.024
  35. Zhu, N. W. 2006. Composting of high moisture content swine manure with corncob in a pilot-scale aerated static bin system. Bioresour. Technol. 97:1870-1875. https://doi.org/10.1016/j.biortech.2005.08.011

Cited by

  1. In-Situ Aerobic Biodegradation Study of Epoxy-Acrylate Film in Compost Soil Environment pp.1572-8900, 2017, https://doi.org/10.1007/s10924-017-1021-6
  2. Solid-State Anaerobic Digestion of Dairy Manure from a Sawdust-Bedded Pack Barn: Moisture Responses vol.11, pp.3, 2018, https://doi.org/10.3390/en11030484
  3. Influence of controllable variables on the composting process, kinetic, and maturity of Stevia rebaudiana residues pp.2251-7715, 2018, https://doi.org/10.1007/s40093-018-0214-x
  4. Physical, Chemical and Biological Properties of an Accelerated Cassava Based Compost Prepared Using Different Ratios of Cassava Peels and Poultry Manure vol.49, pp.14, 2018, https://doi.org/10.1080/00103624.2018.1474914
  5. Optimization of Down-Stream for Cellulases Produced Under Solid-State Fermentation of Coffee Husk pp.1877-265X, 2018, https://doi.org/10.1007/s12649-018-0327-5
  6. Biotransformation des déchets de l’industrie agroalimentaire et génération d’un fertilisant pour les cultures agricoles vol.2018, pp.9, 2018, https://doi.org/10.1051/tsm/201809043
  7. Nutrient availability in sago bark and empty fruit bunch composts for the growth of water spinach and green mustard vol.26, pp.22, 2019, https://doi.org/10.1007/s11356-019-05548-6
  8. From anaerobic to aerobic treatment: upcycling of digestate as a moisturizing agent for in-vessel composting process vol.7, pp.1, 2016, https://doi.org/10.1186/s40643-020-00348-0
  9. Assessing hydrothermal carbonization as sustainable home sewage management for rural counties: A case study from Appalachian Ohio vol.781, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.146648
  10. Moisture-Induced Pattern of Gases and Physicochemical Indices in Corn Straw and Cow Manure Composting vol.11, pp.18, 2016, https://doi.org/10.3390/app11188493
  11. Composting and Methane Emissions of Coffee By-Products vol.12, pp.9, 2016, https://doi.org/10.3390/atmos12091153
  12. Moisture content and aeration control mineral nutrient solubility in poultry litter vol.300, pp.None, 2016, https://doi.org/10.1016/j.jenvman.2021.113787