DOI QR코드

DOI QR Code

Effect of Bacillus subtilis Natto on Meat Quality and Skatole Content in TOPIGS Pigs

  • Sheng, Q.K. (Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences) ;
  • Zhou, K.F. (Shandong Chief Animal Husbandry and Veterinarian Station) ;
  • Hu, H.M. (Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences) ;
  • Zhao, H.B. (Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences) ;
  • Zhang, Y. (Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences) ;
  • Ying, W. (Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences)
  • Received : 2015.06.02
  • Accepted : 2015.09.29
  • Published : 2016.05.01

Abstract

This study investigated the effect of Bacillus subtilis (B. subtilis) natto on meat quality and skatole in TOPIGS pigs. Sixty TOPIGS pigs were randomly assigned to 3 groups (including 5 pens per group, with 4 pigs in each pen) and fed with basic diet (control group), basic diet plus 0.1% B. subtilis natto (B group), and basic diet plus 0.1% B. subtilis natto plus 0.1% B. coagulans (BB group), respectively. All pigs were sacrificed at 100 kg. Growth performance, meat quality, serum parameters and oxidation status in the three groups were assessed and compared. Most parameters regarding growth performance and meat quality were not significantly different among the three groups. However, compared with the control group, meat $pH_{24}$, fat and feces skatole and the content of Escherichia coli (E. Coli), Clostridium, $NH_3$-N were significantly reduced in the B and BB groups, while serum total cholesterol, high density lipoprotein, the levels of liver P450, CYP2A6, and CYP2E1, total antioxidant capability (T-AOC) and glutathione peroxidase and Lactobacilli in feces were significantly increased in the B and BB groups. Further, the combined supplementation of B. subtilis natto and B. coagulans showed more significant effects on the parameters above compared with B. subtilis, and Clostridium, and $NH_3$-N. Our results indicate that the supplementation of pig feed with B. subtilis natto significantly improves meat quality and flavor, while its combination with B. coagulans enhanced these effects.

Keywords

References

  1. Bhat, A. R., V. U. Irorere, T. Bartlett, D. Hill, G. Kedia, M. R. Morris, D. Charalampopoulos, and I. Radecka. 2013. Bacillus subtilis natto: A non-toxic source of poly-gamma-glutamic acid that could be used as a cryoprotectant for probiotic bacteria. AMB Express 3:36. https://doi.org/10.1186/2191-0855-3-36
  2. Chen, Q. M. and L. C. Wang. 1997. Modern pig production. China Agricultural University Press, Beijing, China. 68-69:353-357.
  3. Cui, C., C. J. Shen, G. Jia, and K. N. Wang. 2013. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism. Genet. Mol. Res. 12:1766-1776. https://doi.org/10.4238/2013.May.23.1
  4. Doerner, K. C., K. L. Cook, and B. P. Mason. 2009. 3-Methylindole production is regulated in Clostridium scatologenes ATCC 25775. Lett. Appl. Microbiol. 48:125-132. https://doi.org/10.1111/j.1472-765X.2008.02502.x
  5. Eom, H. J., J. S. Moon, E. Y. Seo, and N. S. Han. 2009. Heterologous expression and secretion of Lactobacillus amylovorus alpha-amylase in Leuconostoc citreum. Biotechnol. Lett. 31:1783-1788. https://doi.org/10.1007/s10529-009-0079-1
  6. Faucitano, L., J. Rivest, J. P. Daigle, J. Levesque, and C. Gariepy. 2004. Distribution of intramuscular fat content and marbling within the longissimus muscle of pigs. Can. J. Anim. Sci. 84:57-61. https://doi.org/10.4141/A03-064
  7. Giang, H. H., T. Q. Viet, B. Ogle, and J. E. Lindberg. 2011. Effects of supplementation of probiotics on the performance, nutrient digestibility and faecal microflora in growing-finishing pigs. Asian Australas. J. Anim. Sci. 24:655-661. https://doi.org/10.5713/ajas.2011.10238
  8. Hosoi, T., A. Ametani, K. Kiuchi, and S. Kaminogawa. 2000. Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Can. J. Microbiol. 46:892-897. https://doi.org/10.1139/w00-070
  9. Linden, A., D. Desmecht, S. Vandenput, M. L. Van De Weerdt, and P. Lekeux. 1996. Effect of serotonergic blockade on calf pulmonary function after the intravenous administration of 3-methylindole. J. Comp. Pathol. 114:361-371. https://doi.org/10.1016/S0021-9975(96)80012-0
  10. Lomiwes, D., M. M. Farouk, E. Wiklund, and O. A. Young. 2014. Small heat shock proteins and their role in meat tenderness: A review. Meat Sci. 96:26-40. https://doi.org/10.1016/j.meatsci.2013.06.008
  11. Lundell, K. and K. Wikvall. 2008. Species-specific and agedependent bile acid composition: Aspects on CYP8B and CYP4A subfamilies in bile acid biosynthesis. Curr. Drug Metab. 9:323-331. https://doi.org/10.2174/138920008784220574
  12. Meng, Q. W., L. Yan, X. Ao, T. X. Zhou, J. P. Wang, J. H. Lee, and I. H. Kim. 2010. Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs. J. Anim. Sci. 88:3320-3326. https://doi.org/10.2527/jas.2009-2308
  13. Nagai, T. 2012. Bacteriophages of Bacillus subtilis (natto) and their contamination in natto factories. Bacteriophages (Ed. I. Kurtboke). InTech, Rijeka, Croatia. pp 95-110.
  14. Norlin, M. and K. Wikvall. 2007. Enzymes in the conversion of cholesterol into bile acids. Curr. Mol. Med. 7:199-218. https://doi.org/10.2174/156652407780059168
  15. Rinkinen, M. L., J. M. Koort, A. C. Ouwehand, E. Westermarck, and K. J. Bjorkroth. 2004. Streptococcus alactolyticus is the dominating culturable lactic acid bacterium species in canine jejunum and feces of four fistulated dogs. FEMS Microbiol. Lett. 230:35-39. https://doi.org/10.1016/S0378-1097(03)00851-6
  16. Rosenvold, K. and H. J. Andersen. 2003. Factors of significance for pork quality-A review. Meat Sci. 64:219-237. https://doi.org/10.1016/S0309-1740(02)00186-9
  17. Sheng, Q. K., Z. J. Yang, H. B. Zhao, X. L. Wang, and J. F. Guo. 2015. Effects of L-tryptophan, fructan, and casein on reducing ammonia, hydrogen sulfide, and skatole in fermented swine manure. Asian Australas. J. Anim. Sci. 28:1202-1208. https://doi.org/10.5713/ajas.14.0901
  18. Strathe, A. B., I. H. Velander, T. Mark, and H. N. Kadarmideen. 2013. Genetic parameters for androstenone and skatole as indicators of boar taint and their relationship to production and litter size traits in Danish Landrace. J. Anim. Sci. 91:2587-2595. https://doi.org/10.2527/jas.2012-6107
  19. Wajda, S., K. Smiecińska, J. Jankowski, P. Matusevicius, and G. Buteikis. 2010. The efficacy of lactic acid bacteria Pediococcus acidilactici, lactose and formic acid as dietary supplements for turkeys. Pol. J. Vet. Sci. 13:45-51.
  20. Whitehead, T. R., N. P. Price, H. L. Drake, and M. A. Cotta. 2008. Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen Clostridium drakei, Clostridium scatologenes, and swine manure. Appl. Environ. Microbiol. 74:1950-1953. https://doi.org/10.1128/AEM.02458-07
  21. Wiercinska, P., Y. Lou, and E. J. Squires. 2012. The roles of different porcine cytochrome P450 enzymes and cytochrome b5A in skatole metabolism. Animal 6:834-845. https://doi.org/10.1017/S1751731111002175
  22. Yang, N. C., C. W. Chou, C. Y. Chen, K. L. Hwang, and Y. C. Yang. 2009. Combined nattokinase with red yeast rice but not nattokinase alone has potent effects on blood lipids in human subjects with hyperlipidemia. Asia. Pac. J. Clin. Nutr. 18:310-317.
  23. Yongjun, C., B. Wei, J. Shujun, W. Meizhi, J. Yan, Y. Yan, Z. Zhongliang, and Z. Goulin. 2011. Directed evolution improves the fibrinolytic activity of nattokinase from Bacillus natto. FEMS Microbiol. Lett. 325:155-161. https://doi.org/10.1111/j.1574-6968.2011.02423.x
  24. Zahn, J. A., J. L. Hatfield, Y. S. Do, A. A. Dispirito, D. A. Laird, and R. L. Pfeiffer. 1997. Characterization of volatile organic emissions and wastes from swine production facilities. J. Environ. Qual. 26:1687-1696.
  25. Zamaratskaia, G., G. Chen, and K. Lundstrom. 2006. Effects of sex, weight, diet and hCG administration on levels of skatole and indole in the liver and hepatic activities of cytochromes P4502E1 and P4502A6 in pigs. Meat Sci. 72:331-338. https://doi.org/10.1016/j.meatsci.2005.07.020
  26. Zhou, X., Y. Wang, Q. Gu, and W. Li. 2010. Effect of dietary probiotic, Bacillus coagulans, on growth performance, chemical composition, and meat quality of Guangxi Yellow chicken. Poult. Sci. 89:588-593. https://doi.org/10.3382/ps.2009-00319

Cited by

  1. Effects of intranasal administration with Bacillus subtilis on immune cells in the nasal mucosa and tonsils of piglets vol.15, pp.6, 2016, https://doi.org/10.3892/etm.2018.6093
  2. A Newly Isolated Bacillus subtilis Strain Named WS-1 Inhibited Diarrhea and Death Caused by Pathogenic Escherichia coli in Newborn Piglets vol.10, pp.None, 2016, https://doi.org/10.3389/fmicb.2019.01248
  3. Bacillus subtilis natto as a potential probiotic in animal nutrition vol.41, pp.3, 2016, https://doi.org/10.1080/07388551.2020.1858019
  4. Effect of BioPlus YC Probiotic Supplementation on Gut Microbiota, Production Performance, Carcass and Meat Quality of Pigs vol.11, pp.6, 2021, https://doi.org/10.3390/ani11061581