참고문헌
- Burgess, T.L., Qian, Y., Kaufman, S., Ring, B.D., Van, G., Capparelli, C., Kelley, M., Hsu, H., Boyle, W.J., Dunstan, C.R., et al. (1999). The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145, 527-538. https://doi.org/10.1083/jcb.145.3.527
- Cohen, S.B., Dore, R.K., Lane, N.E., Ory, P.A., Peterfy, C.G., Sharp, J.T., van der Heijde, D., Zhou, L., Tsuji, W., Newmark, R., et al. (2008). Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebocontrolled, phase II clinical trial. Arthritis Rheumatism 58, 1299-1309. https://doi.org/10.1002/art.23417
- Cummings, S.R., San Martin, J., McClung, M.R., Siris, E.S., Eastell, R., Reid, I.R., Delmas, P., Zoog, H.B., Austin, M., Wang, A., et al. (2009). Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Y J. Med. 361, 756-765. https://doi.org/10.1056/NEJMoa0809493
- Dempster, D.W., Lambing, C.L., Kostenuik, P.J., and Grauer, A. (2012). Role of RANK ligand and denosumab, a targeted RANK ligand inhibitor, in bone health and osteoporosis: a review of preclinical and clinical data. Clin. Ther. 34, 521-536. https://doi.org/10.1016/j.clinthera.2012.02.002
- Denizot, F., and Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89, 271-277. https://doi.org/10.1016/0022-1759(86)90368-6
- Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper, U., and Sali, A. (2006). Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics Chapter 5, Unit 5.6.
- George A. Kaminski, R.A.F., Julian Tirado-Rives, and William L. Jorgensen (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474-6487. https://doi.org/10.1021/jp003919d
- Geusens, P. (2009). Emerging treatments for postmenopausal osteoporosis - focus on denosumab. Clin. Interv. Aging 4, 241-250.
- Guerrini, M.M., and Takayanagi, H. (2014). The immune system, bone and RANKL. Arch. Biochem. Biophys. 561, 118-123. https://doi.org/10.1016/j.abb.2014.06.003
- Jules, J., Ashley, J.W., and Feng, X. (2010). Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis. Expert Opin. Ther. Targets 14, 923-934. https://doi.org/10.1517/14728222.2010.511179
- London, N., Raveh, B., Cohen, E., Fathi, G., and Schueler-Furman, O. (2011). Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions. Nucleic Acids Res. 39, W249-253. https://doi.org/10.1093/nar/gkr431
- Michigami, T., Ihara-Watanabe, M., Yamazaki, M., and Ozono, K. (2001). Receptor activator of nuclear factor kappaB ligand (RANKL) is a key molecule of osteoclast formation for bone metastasis in a newly developed model of human neuroblastoma. Cancer Res. 61, 1637-1644.
- Neuprez, A., Coste, S., Rompen, E., Crielaard, J.M., and Reginster, J.Y. (2014). Osteonecrosis of the jaw in a male osteoporotic patient treated with denosumab. Osteoporos. Int. 25, 393-395. https://doi.org/10.1007/s00198-013-2437-z
- Oshiro, T., Shiotani, A., Shibasaki, Y., and Sasaki, T. (2002). Osteoclast induction in periodontal tissue during experimental movement of incisors in osteoprotegerin-deficient mice. Anat. Rec. 266, 218-225. https://doi.org/10.1002/ar.10061
- Recker, R., Lappe, J., Davies, K.M., and Heaney, R. (2004). Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J. Bone Miner. Res. 19, 1628-1633. https://doi.org/10.1359/JBMR.040710
- Schieferdecker, A., Voigt, M., Riecken, K., Braig, F., Schinke, T., Loges, S., Bokemeyer, C., Fehse, B., and Binder, M. (2014). Denosumab mimics the natural decoy receptor osteoprotegerin by interacting with its major binding site on RANKL. Oncotarget 5, 6647-6653. https://doi.org/10.18632/oncotarget.2160
- Son, Y.H., Moon, S.H., and Kim, J. (2013). The protein kinase 2 inhibitor CX-4945 regulates osteoclast and osteoblast differentiation in vitro. Mol. Cells 36, 417-423. https://doi.org/10.1007/s10059-013-0184-9
- Ta, H.M., Nguyen, G.T., Jin, H.M., Choi, J., Park, H., Kim, N., Hwang, H.Y., and Kim, K.K. (2010). Structure-based development of a receptor activator of nuclear factor-kappaB ligand (RANKL) inhibitor peptide and molecular basis for osteopetrosis. Proc. Natl. Acad. Sci. USA 107, 20281-20286. https://doi.org/10.1073/pnas.1011686107
- Tanaka, S. (2013). Regulation of bone destruction in rheumatoid arthritis through RANKL-RANK pathways. World J. Orthop. 4, 1-6. https://doi.org/10.5312/wjo.v4.i1.1
- Tate, A., Kamil, A., Dubey, A., Groblinger, A., Chamberlain, B., Goglin, B., Edwards, C., Newburn, C.J., and Padua, D. (2014). Programming abstractions for data locality. In PADAL Workshop 2014 (Swiss National Supercomputing Center (CSCS), Lugano, Switzerland).
- Wada, T., Nakashima, T., Hiroshi, N., and Penninger, J.M. (2006). RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17-25. https://doi.org/10.1016/j.molmed.2005.11.007
- Wittrant, Y., Theoleyre, S., Chipoy, C., Padrines, M., Blanchard, F., Heymann, D., and Redini, F. (2004). RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim. Biophys. Acta 1704, 49-57.
피인용 문헌
- Unraveling Binding Interactions between Human RANKL and Its Decoy Receptor Osteoprotegerin 2017, https://doi.org/10.1021/acs.jpcb.7b06687
- Porphyrin Derivatives Inhibit the Interaction between Receptor Activator of NF-κB and Its Ligand vol.12, pp.20, 2017, https://doi.org/10.1002/cmdc.201700462
- Gadolinium Tagged Osteoprotegerin-Mimicking Peptide: A Novel Magnetic Resonance Imaging Biospecific Contrast Agent for the Inhibition of Osteoclastogenesis and Osteoclast Activity vol.8, pp.6, 2018, https://doi.org/10.3390/nano8060399
- The Role of Osteoprotegerin and Its Ligands in Vascular Function vol.20, pp.3, 2019, https://doi.org/10.3390/ijms20030705