DOI QR코드

DOI QR Code

Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes

  • Ozbulut, Osman E. (Department of Civil and Environmental Engineering, University of Virginia) ;
  • Silwal, Baikuntha (Department of Civil and Environmental Engineering, University of Virginia)
  • Received : 2015.07.08
  • Accepted : 2015.12.29
  • Published : 2016.05.25

Abstract

This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm to improve the performance of isolated buildings against near-fault earthquakes. The S-FBI system consists of a flat steel-PTFE sliding bearing and superelastic NiTi shape memory alloy (SMA) cables. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA cables provide restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm in order to optimize S-FBI system. Nonlinear time history analyses of the building with optimal S-FBI system are performed. A set of 20 near-fault ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

Keywords

References

  1. Agrawal, A., Xu, Z. and He, W.L. (2006), "Ground motion pulse-based active control of a linear base isolated benchmark building", Struct. Control Health Monit., 13, 792-808. https://doi.org/10.1002/stc.112
  2. Attanasi, G., Auricchio, F. and Fenves, G. L. (2009), "Feasibility assessment of an innovative isolation bearing system with shape memory alloys", J. Earthq. Eng., 13(1), 18-39. https://doi.org/10.1080/13632460902813216
  3. Bhuiyan, R.A. and Alam, M.S. (2013), "Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing", Eng. Struct., 49, 396-407. https://doi.org/10.1016/j.engstruct.2012.11.022
  4. Carreras, G., Casciati, F., Casciati, S., Isalgue, A., Marzi, A. and Torra, V. (2011), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
  5. Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures-theory and applications: A review of recent advances", J. Intel. Mat. Syst. Str., 23(11), 1181-1195. https://doi.org/10.1177/1045389X12445029
  6. Casciati, F. and Hamdaoui, K. (2008), "Modelling the uncertainty in the response of a base isolator", Probabilist. Eng. Mech., 23(4), 427-437. https://doi.org/10.1016/j.probengmech.2007.10.014
  7. Casciati, F. and Faravelli, L. (2009), "A Passive control device with SMA components: From the prototype to the model", Struct. Control Health Monit., 16,751-765.
  8. Casciati, F., Faravelli, L. and Hamdaoui, K. (2007), "Performance of a base isolator with shape memory alloy bars", Earthq. Eng. Eng. Vib., 6(4), 401-408. https://doi.org/10.1007/s11803-007-0787-2
  9. Cimellaro, G.P. (2008), "Improving seismic resilience of structural systems through integrated design of smart structures", Ph.D. Dissertation, University at Buffalo, The State University of New York.
  10. Daghash, S., Ozbulut, O.E. and Sherif, M. (2014), "Shape memory alloy cables for civil infrastructure systems", Proceedings of the ASME 2014: Smart Mate Adaptive Struct Intell Syst, SMASIS2014-7562, Newport, RI, September.
  11. Deb, K., Pratap, A., Agrawal, S. and Meyarivan, T. (2002), "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II", IEEE Trans. Evol. Comput., 6(2),182-197. https://doi.org/10.1109/4235.996017
  12. Dezfuli, F.H. and Alam, M.S. (2013), "Shape memory alloy wire-based smart natural rubber bearing", Smart Mater. Struct., 22(4), 045013. https://doi.org/10.1088/0964-1726/22/4/045013
  13. Etedali, S., Sohrabi, M.R. and Tavakoli, S. (2013), "Optimal PD/PID control of smart base isolated buildings equipped with piezoelectric friction dampers", Earthq. Eng. Eng. Vib., 12(1), 39-54. https://doi.org/10.1007/s11803-013-0150-8
  14. FEMA (2009), "Quantification of Building Seismic Performance Factors", Report No. P695, Federal Emergency Management Agency, Washington, D.C.
  15. Fenz, D.M. and Constantinou, M.C. (2008), "Spherical sliding isolation bearings with adaptive behavior: Theory", Earthq. Eng. Struct. D., 37(2), 163-183. https://doi.org/10.1002/eqe.751
  16. Ghaffarzadeh, H. (2013), "Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step", Smart Struct. Syst., 12(6), 595-617. https://doi.org/10.12989/sss.2013.12.6.595
  17. Gur, S., Mishra, S.K. and Chakraborty. S. (2014), "Performance assessment of buildings isolated by shape-memory-alloy rubber bearing: Comparison with elastomeric bearing under near-fault earthquakes", Struct. Control Health Monit., DOI: 10.1002/stc.1576.
  18. Hall, J.F. (1995), "Near source ground motion and its effects on flexible buildings", Earthq. Spectra, 11, 569-605. https://doi.org/10.1193/1.1585828
  19. Jalali, A., Cardone, D. and Narjabadifam, P. (2011), "Smart restorable sliding base isolation system", Bull. Earthq. Eng., 9(2), 657-673. https://doi.org/10.1007/s10518-010-9213-7
  20. Jangid, R.S. and Kelly, J.M. (2001), "Base isolation for near fault motions", Earthq. Eng. Struct. D., 30, 123-131.
  21. Karalar, M., Padgett, J.E. and Dicleli, M. (2012), "Parametric analysis of optimum isolator properties for bridges susceptible to near-fault ground motions", Eng. Struct., 40, 276-287. https://doi.org/10.1016/j.engstruct.2012.02.023
  22. Lu, L.Y. and Hsu, C.C. (2013), "Experimental study of variable-frequency rocking bearings for near-fault seismic isolation", Eng. Struct., 46, 116-129. https://doi.org/10.1016/j.engstruct.2012.07.013
  23. Math Works Inc. (2013), MATLAB R2013a, Natick, MA.
  24. Nagarajaiah, S. (1995), "Base-isolated FCC Building: Impact response during Northridge earthquake", J. Struct. Eng.-ASCE, 127(9), 1063-1074.
  25. Nagarajaiah, S. and Sahasrabudhe, S. (2006), "Seismic response control of smart sliding isolated buildings using variable stiffness systems: an experimental and numerical study", Earthq. Eng. Struct. D., 35(2), 177-197. https://doi.org/10.1002/eqe.514
  26. Ohtori, Y., Christenson, R.E., Spencer Jr, B.F. and Dyke, S.J. (2004), "Benchmark control problems for seismically excited nonlinear buildings." J. Eng. Mech.-ASCE, 130(4), 366-385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366)
  27. OpenSees (2013), "The Open System for Earthquake Engineering Simulation." http://opensees.berkeley.edu Pacific Earthquake Engineering Research Center (PEER).
  28. Ozbulut, O.E. and Hurlebaus, S. (2010a), "Evaluation of the performance of a sliding-type base isolation system with a NiTi shape memory alloy device considering temperature effects", Eng. Struct., 32, 238-249. https://doi.org/10.1016/j.engstruct.2009.09.010
  29. Ozbulut, O.E. and Hurlebaus, S. (2010b), "Neuro-fuzzy modeling of temperature-and strain-rate-dependent behavior of NiTi shape memory alloys for seismic applications", J. Intel. Mat. Syst. Str., 21, 837-849. https://doi.org/10.1177/1045389X10369720
  30. Ozbulut, O.E. Maryam, B. and Stefan, H. (2011a), "Adaptive control of base-isolated structures against near-field earthquakes using variable friction dampers", Eng. Struct., 33(12), 3143-3154. https://doi.org/10.1016/j.engstruct.2011.08.022
  31. Ozbulut, O.E. Hurlebaus, S. and DesRoches, R. (2011b), "Seismic response control using shape memory alloys: A review", J. Intel. Mat. Syst. Str., 22, 1531-1549 https://doi.org/10.1177/1045389X11411220
  32. Ozbulut, O.E. and Hurlebaus, S. (2011c), "Seismic assessment of bridge structures isolated by a shape memory alloy/rubber-based isolation system", Smart Mater. Struct., 20, 015003. https://doi.org/10.1088/0964-1726/20/1/015003
  33. Ozbulut, O.E. and Hurlebaus, S. (2011d), "Energy-balance assessment of shape memory alloy-based seismic isolation devices." Smart Struct. Syst., 8, 399-412. https://doi.org/10.12989/sss.2011.8.4.399
  34. Ozbulut, O.E. and Hurlebaus, S. (2012), "A comparative study on seismic performance of superelastic-friction base isolators against near-field earthquakes", Earthq. Spectra, 28, 1147-1163. https://doi.org/10.1193/1.4000070
  35. Ozbulut, O.E., Daghash, S. and Sherif, M.M. (2015), "Shape memory alloy cables for structural applications", J. Mater. Civ. Eng.,10.1061/(ASCE)MT.1943-5533.0001457, 04015176.
  36. Panchal, V.R. and Jangid, R.S. (2008), "Variable friction pendulum system for near-fault ground motions", Struct. Control Health Monit., 15(4), 568-584. https://doi.org/10.1002/stc.216
  37. Pant, D.R. and Wijeyewickrema, A.C. (2012), "Structural performance of a base-isolated reinforced concree building subjected to seismic pounding", Earthq. Eng. Struct. D., 41, 1709-1716. https://doi.org/10.1002/eqe.2158
  38. Polucarpou, P. and Komodromos, P. (2010), "On poundings of a seismically isolated building with adjacent structures during strong earthquakes", Earthq. Eng. Struct. D., 39, 933-940.
  39. Reedlunn, B., Daly, S. and Shaw, J. (2013), "Superelastic shape memory alloy cables: Part I-isothermal tension experiments", Int. J. Solid Struct., 50(20), 3009-3026. https://doi.org/10.1016/j.ijsolstr.2013.03.013
  40. Shen, J., Tsai, M.H., Chang, K.C. and Lee, G.C. (2004), "Performance of a seismically isolated bridge under near-fault earthquake ground motions", J. Struct. Eng.-ASCE, 30(6), 861-868.
  41. Somerville, P., Nancy, F., Punyamurthula, S. and Sun, J.I. (1997), "Development of ground motion time histories for Phase 2 of the FEMA/SAC steel project", SAC Background Document SAC/BD-91/04, SAC Joint Venture, Sacramento, CA.
  42. Torra, V., Auguet, C., Isalgue, A., Carreras, G., Terriault, P. and Lovey, F.C. (2013), "Built in dampers for stayed cables in bridges via SMA. The SMARTeR-ESF project: a mesoscopic and macroscopic experimental analysis with numerical simulations", Eng. Struct., 49, 43-57. https://doi.org/10.1016/j.engstruct.2012.11.011

Cited by

  1. Seismic behavior of self-centering reinforced concrete wall enabled by superelastic shape memory alloy bars vol.16, pp.1, 2018, https://doi.org/10.1007/s10518-017-0213-8
  2. Applicability of superelastic materials in seismic protection systems: a parametric study of performance in isolation of structures vol.26, pp.8, 2017, https://doi.org/10.1088/1361-665X/aa7caf
  3. Feasibility Analysis of SMA-Based Damping Devices for Use in Seismic Isolation of Low-Rise Frame Buildings 2018, https://doi.org/10.1142/S0219455418500876
  4. Life-cycle cost evaluation of steel structures retrofitted with steel slit damper and shape memory alloy–based hybrid damper pp.2048-4011, 2018, https://doi.org/10.1177/1369433218773487
  5. Seismic behavior of properly designed CBFs equipped with NiTi SMA braces vol.21, pp.4, 2016, https://doi.org/10.12989/sss.2018.21.4.479
  6. Temperature effect on seismic performance of CBFs equipped with SMA braces vol.22, pp.5, 2018, https://doi.org/10.12989/sss.2018.22.5.495
  7. Seismic Behavior of Superelastic Shape Memory Alloy Spring in Base Isolation System of Multi-Story Steel Frame vol.12, pp.6, 2016, https://doi.org/10.3390/ma12060997
  8. Dynamic behavior of a seven century historical monument reinforced by shape memory alloy wires vol.23, pp.4, 2019, https://doi.org/10.12989/sss.2019.23.4.337
  9. Experimental Study of Novel Self-Centering Seismic Base Isolators Incorporating Superelastic Shape Memory Alloys vol.146, pp.7, 2020, https://doi.org/10.1061/(asce)st.1943-541x.0002679
  10. Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS): an engineering solution for practical aseismic isolation with advanced materials vol.26, pp.1, 2016, https://doi.org/10.12989/sss.2020.26.1.089
  11. Long-stroke shape memory alloy restrainers for seismic protection of bridges vol.29, pp.11, 2020, https://doi.org/10.1088/1361-665x/aba53a
  12. Cyclic behavior of an adaptive seismic isolation system combining a double friction pendulum bearing and shape memory alloy cables vol.30, pp.7, 2021, https://doi.org/10.1088/1361-665x/abfb80