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Abstract—Monolithically integrated devices are 
strongly desired in next generation power ICs to 
reduce the chip size and improve the efficiency and 
frequency response. Three examples of the 
embedment of different functional diode(s) into 
AlGaN/GaN heterojunction field-effect transistors are 
presented, which can minimize the parasitic effects 
caused by interconnection between devices.    
 
Index Terms—AlGaN/GaN, embedment, heterojunction 
field-effect transistor, monolithic integration, Schottky 
barrier diode    

I. INTRODUCTION 

AlGaN/GaN heterojunction field-effect transistors 
(HFETs) are great candidates for next generation power 
switching applications in various power electronics due to 
superior physical properties such as high mobility, high 
breakdown field, and high carrier concentration [1-5]. In 
order to fulfill the maximum power conversion efficiency 
of AlGaN/GaN based power devices, the parasitic effects 
such as parasitic inductance caused by interconnection 
between devices must be minimized [6]. That is, 

monolithic integration of different functional devices is 
highly demanded in future power ICs. In this report, we 
review three different functional devices developed in our 
group, which were implemented by embedding AlGaN/ 
GaN Schottky barrier diodes (SBDs) into HFETs; (i) 
HFET with an embedded freewheeling diode, (ii) reverse 
blocking HFET, and (iii) bi-directional switch with a 
monolithically integrated diode bridge circuit. 

II. DIODE EMBEDMENT 

1. Embedment of Freewheeling SBD 
 
When AlGaN/GaN HFETs are used as switching 

devices in converters or inverters, they have 
freewheeling capability by themselves but the power loss 
during the reverse conduction mode is large due to the 
large reverse turn-on voltage characteristics. Therefore, it 
is common to add a freewheeling diode in parallel with a 
switching transistor to reduce the loss during the dead 
time as illustrated in Fig. 1 [7]. However, when a 
separate diode is added for the freewheeling function, not 
only does the chip size increase but also the parasitic 
inductance caused by interconnection limits the 
efficiency at high frequencies. These issues can be 
diminished by embedding a freewheeling diode into an 
AlGaN/GaN HFET. 

As shown in Fig. 2, a Schottky contact electrode is 
inserted between the source and drain electrodes, being 
connected electrically to the source electrode. When a 
positive drain voltage is applied, the Schottky anode is 
reverse-biased and thus no current flows through the 
anode whereas the FET mode is in normal operation [8].  
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On the other hand, when a negative drain voltage is 
applied, the Schottky anode is forward-biased allowing 
the current flow from the source to the drain. Therefore, 
the reverse conduction mode can be achieved via the 
Schottky anode even when the FET is under the off-state 
condition. 

The device fabrication steps are summarized briefly in 
Table 1. The gate dielectric film was SiO2 and both gate 
metal and Schottky anode contact were formed by Ni/Au. 
The forward and reverse current-voltage characteristics 
are shown in Fig. 3 along with the forward breakdown 
characteristics. The measured gate threshold voltage for 
the forward FET mode was 2.8 V and the reverse turn-on 
voltage in the freewheeling mode was 1.2 V. The gate 
threshold voltage depends on the MOS gate whereas the 
reverse turn-on voltage depends on the Schottky barrier 
height of the anode contact [8]. The breakdown voltage 

is governed by the distance between anode and drain. 
 

2. Embedment of Reverse Blocking SBD 
 
Despite the need for the freewheeling capability of the 

power switching device discussed above, the reverse 
conduction is not desired for many other applications. 
Circuits may be destroyed under abnormal situation 
when the reverse current flows back to the system [9]. In 
such cases, an extra protection circuit or diode needs to 
be connected to the FET. A simple approach would be 
the addition of a reverse blocking diode to the output 
drain node. Lu et al. reported a Schottky drain electrode 
to block the reverse current in AlGaN/GaN HFET [10]. 
However, the drawback in this approach is the forward 
on-set characteristics caused by the turn-on voltage of the 
Schottky drain, which increases the on-state loss as 
illustrated in Fig. 4. In order to reduce the on-set voltage, 
a gated-ohmic configuration [11] was employed for the 
drain of AlGaN/GaN HFET as illustrated in Fig. 5. 

The device fabrication steps are summarized briefly in 
Table 2. The precise control of the recess depth is the key 

 

Fig. 1. (a) Typical DC-DC buck converter, (b) current-voltage 
characteristics of AlGaN/GaN HFET with and without a 
freewheeling SBD, (c) effects of the reverse turn-on voltage 
with and without a freewheeling SBD on dead time loss.  

 

 

Fig. 2. Cross-sectional schematic of AlGaN/GaN-on-Si MOS-
HFET with an embedded freewheeling SBD. 
 

Table 1. Process flow for AlGaN/GaN-on-Si MOS-HFET with 
an embedded freewheeling SBD 

Seq. Step Process 
1 Mesa isolation BCl3/Cl2 ICP-RIE 
2 Gate recess BCl3/Cl2 ICP-RIE 
3 Gate oxide deposition SiO2 deposition 
4 Ohmic formation Si/Ti/Al/Mo/Au 
5 Gate formation Ni/Au 
6 Passivation SiNx deposition 
7 Source connected anode formation Ni/Au 
 

 

Fig. 3. Current-voltage and breakdown characteristics for the 
fabricated AlGaN/GaN-on-Si MOS-HFET with an embedded 
freewheeling SBD.  
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process. The thickness of the remaining AlGaN barrier 
layer underneath the recessed Schottky region was only 3 
nm that was thin enough to deplete the 2DEG channel at 
zero bias. The channel under the recessed region can be 
opened with a small positive drain voltage, allowing the 
current path from the ohmic contact region, so-called the 
‘gated-ohmic’ characteristics [12]. When the drain 
voltage is higher than the turn-on voltage of the recessed 
SBD, the current can flow from both ohmic drain and 
recessed Schottky regions. 

The current-voltage characteristics of the fabricated 
device are shown in Fig. 6. For comparison, those for a 

conventional HFET fabricated with an ohmic drain 
electrode in the same process lot is plotted together. The 
proposed device exhibited successful reverse blocking 
characteristics with a forward on-set voltage of only 
0.4 V with comparable forward characteristics.  

 
3. Bi-Directional Switch 

 
Matrix converters have received much attention 

because of their higher efficiency compared to 
conventional AC-AC converters [13]. A matrix converter 
is composed of multiple bi-directional switches [14]. As 
shown in Fig. 7, typical bi-directional switches can be 
implemented by either two transistors coupled with two 
diodes or one transistor connected with a diode bridge 
composed of four diodes. It should be noted that each 
transistor requires a gate driver whose chip size is added 
to the overall power IC size. 

A bi-directional AlGaN/GaN MOS-HFET with a 
monolithically integrated diode bridge is illustrated in 

 

Fig. 4. Forward on-set characteristics caused by adding a 
Schottky drain, which increases the on-state loss.  

 

 

Fig. 5. Cross-sectional schematics of a reverse blocking 
AlGaN/GaN-on-Si HFET with a gated-ohmic drain electrode. 

 
Table 2. Process flow of AlGaN/GaN HFET with a reverse 
blocking SBD 

Seq. Step Process 
1 Mesa isolation BCl3/Cl2 ICP-RIE 
2 Ohmic formation Si/Ti/Al/Mo/Au 
3 Gate oxide deposition SiO2 deposition 
4 Gate opening BOE (7:1) 
5 Gate metal deposition Ni/Au 
6 Recessed drain region BCl3/ Cl2 ICP-RIE 
7 Drain overlay metal deposition Ni/Au 
 

 

 

Fig. 6. Comparison of the current-voltage characteristics 
between AlGaN/GaN-on-Si HFETs with and without a gated 
ohmic drain electrode.  

 

 

Fig. 7. Typical bi-directional switches (a) two transistors 
coupled with two diodes, (b) one transistor connected with a 
diode bridge. 
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Fig. 8. Since the drain electrodes of MOS-HFET are 
replaced by Schottky contacts, no extra space is required 
for them. The other two SBDs are monolithically 
integrated with the source electrode [15]. The device 
fabrication steps are summarized in Table 3. The Mo/Au 
stack was used for gate and Schottky formation to reduce 
the Schottky barrier height while improving the adhesion 
between gate and gate oxide layer. 

When the HFET is off, no current flows between S1 
and S2. When the MOS-HFET is on, the current flows 
bi-directionally depending on the polarity of the applied 
voltage between S1 and S2. This configuration can save 

the overall chip area significantly due to the monolithic 
integration technology. In addition, this configuration 
requires only one gate driver. 

The bi-directional switching characteristics are shown 
in Fig. 9. The gate threshold voltage was 6 V for both 
forward and reverse modes with symmetric bi-directional 
characteristics. 

III. CONCLUSION 

Diode embedded AlGaN/GaN HFETs presented in this 
report can be widely applied to small size future power 
ICs. The embedded diode configurations can 
significantly reduce the chip size and minimize the 
parasitic inductance, which will give the significant 
benefit in conversion efficiency, especially at high 
switching frequencies. 
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