DOI QR코드

DOI QR Code

EMG 신호 기반 Artificial Neural Network을 이용한 사용자 인식

Human Identification using EMG Signal based Artificial Neural Network

  • 투고 : 2015.12.30
  • 심사 : 2016.03.28
  • 발행 : 2016.04.25

초록

최근 다양한 생체신호를 이용한 사용자 인식 방법들이 연구되고 있으며 그 중에 보행을 기반으로 한 사용자 인식 방법이 활발하게 연구되고 있다. 본 논문에서는 사람이 보행할 때 사용되는 허벅지 근육의 EMG(Electromyography) 신호를 기반으로 사용자를 인식하는 방법을 제안하였다. 근전도 신호의 RMS, MAV, VAR, WAMP, ZC, SSC, IEMG, MMAV1, MMAV2, MAVSLP, SSI, WL를 특징으로 산출하여 ANN(Artificial Neural Network) 분류기를 통해 사용자를 인식한다. 사용자 인식에 적합한 근육과 특징을 선별하기 위해서 근육 및 특징별 인식률을 비교한 결과 대퇴직근, 반건양근, 외측광근이 사용자 인식에 적합한 근육으로 나타났으며, MAV, ZC, IEMG, MMAV1, MAVSLP 특징이 사용자 인식에 적합한 특징으로 나타났다. 실험결과 모든 특징들과 채널들을 사용했을 때의 인식률은 평균 99.7%을 보였고 사용자 인식에 적합하다고 판단되는 3개의 근육, 5개의 특징을 사용했을 때의 인식률은 평균 96%을 보였다. 따라서 사용자의 보행에 따른 EMG 신호 기반 사용자 인식이 가능함을 확인하였다. 그리고 사용자 인식에 적합한 소수의 채널과 특징을 사용하여 사용자 인식하는데 적용될 수 있음을 확인하였다.

Recently, human identification using various biological signals has been studied and human identification based on the gait has been actively studied. In this paper, we propose a human identification based on the EMG(Electromyography) signal of the thigh muscles that are used when walking. Various features such as RMS, MAV, VAR, WAMP, ZC, SSC, IEMG, MMAV1, MMAV2, MAVSLP, SSI, WL are extracted from EMG signal data and ANN(Artificial Neural Network) classifier is used for human identification. When we evaluated the recognition ratio per channel and features to select approptiate channels and features for human identification. The experimental results show that the rectus femoris, semitendinous, vastus lateralis are appropriate muscles for human identification and MAV, ZC, IEMG, MMAV1, MAVSLP are adaptable features for human identification. Experimental results also show that the average recognition ratio of method of using all channels and features is 99.7% and that of using selected 3 channels and 5 features is 96%. Therefore, we confirm that the EMG signal can be applied to gait based human identification and EMG signal based human identification using small number of adaptive muscles and features shows good performance.

키워드

참고문헌

  1. J-W. Byun, "A Study on Efficient and Secure user Authentication System based on Smartcard", Journal of The Institute of Electronics Engineers of Korea - Telecommunications Vol.48, No.2, pp.105-115, 2011.
  2. J-A. Park, S-W. Cho and S-T. Chung, "Smart Card User Identification Using Low-sized Face Feature Information", Journal of Korean Institute of Intelligent Systems, Vol.24, No.4, pp.349-354, August 2014. https://doi.org/10.5391/JKIIS.2014.24.4.349
  3. Z. Zhou, E. Y. Du, N. L. Thomas and E. J. Delp, "A New Human Identification Method: Sclera Recognition", IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol.42, No.3, pp.571-583, May 2012. https://doi.org/10.1109/TSMCA.2011.2170416
  4. S-H. Kim, J-W. Ryu, M-R. Lee and D-H. Kim, "Human Identification based on Gait Cycle Using EMG signal", Fall Conference of the Institute of Electronics and Information Engineers, pp.592-594, Ansan, Korea, November 2014.
  5. X. Huang, S. Altahat, D. Tran and D. Sharma, "Human Identification with Electroencephalogram (EEG) Signal Processing", In Proc. of 2012 Intl. Symposium on Communications and Information Technologies, pp.1021-1026, Queensland, Australia, October 2012.
  6. H. Josinski, A. Switoński, K. Jedrasiak and D. Kostrzewa, "Human Identification Based on Gait Motion Capture Data", In Proc. of 2012 Intl. MultiConference of Engineers and Computer Scientists, Vol.1, Hong Kong, China, March 2012.
  7. A. Singhal and B. Lall, "Novel Signal Processing Approach for Gait Based Human Identification System", In Proc. of Intl. Conference on Signal Processing and Communication, pp.197-201, Noida, India, December 2013.
  8. J-W. Ryu and D-H. Kim, "sEMG Signal based Gait Phase Recognition Method for Selecting Features and Channels Adaptively", Journal of The Rehabilitation Engineering and Assistive Technology Society, Vol.7, No.2, pp.19-26, December 2013.
  9. B. M. Mehtre, "Fingerprint Image Analysis for Automatic Identification", Machine Vision and Applications, Vol.6, pp.124-139, March 1993. https://doi.org/10.1007/BF01211936
  10. C. L. Tisse, L. Martin, L. Torres and M. Robert, "Person identification technique using human iris recognition", In Proc. of Vision Interface, Vol.4, pp.294-299, 2002.
  11. I. S. Jadhav, V. T. Gaikwad and G. U. Patil, "Human Identification using Face and Voice Recognition.", International Journal of Computer Science and Information Technologies, Vol.2, No.3, pp.1248-1252, 2011.
  12. A. Kumarn and C. Wu, "Automated human ident ification using ear imaging", Pattern Recognition, Vol.45, No.3, pp.956-968, March 2012. https://doi.org/10.1016/j.patcog.2011.06.005
  13. L. Biel, O. Pettersson, L. Philipson, and P. Wide, "ECG Analysis: A New Approach in Human Identification", IEEE Transactions on Instrumentation and Measurement, Vol.50, No.3, pp.808-812, June 2001. https://doi.org/10.1109/19.930458
  14. R. Maxion and K. S. Killourhy, "Keystroke Biometrics with Number-Pad Input", In Proc. of 2010 Intl. IEEE/IFIP Conference on Dependable Systems and Networks, pp.201-210, Chicago, USA, June 2010.
  15. F. Monrose, and Aviel D. Rubin, "Keystroke dynamics as a biometric for authentication.", Future Generation computer systems, Vol.16, No.4, pp.351-359, February 2000. https://doi.org/10.1016/S0167-739X(99)00059-X
  16. J. T. Geiger, M. KneiBl, B. W. Schuller and G. Rigoll, "Acoustic Gait-based Person Identification using Hidden Markov Models", In Proc. of the 2014 Workshop on Mapping Personality Traits Challenge and Workshop, pp.25-30, New York, USA, November 2014.
  17. C. Holland and O. V. Komogortsev, "Biometric Identification via Eye Movement Scan paths in Reading.", In Proc. of 2011 Intl. Joint Conference on Biometrics, pp.1-8, Washington, USA, October 2011.
  18. A. Phinyomark, C. Limsakul and P. Phukpattaranont, "A Novel Feature Extraction for Robust EMG Pattern Recognition", Journal of Computing, Vol.1, No.1, pp.71-80, December 2009.
  19. M. R. Ahsan, M. I. Ibrahimy and O. O. Khalifa, "Electromygraphy (EMG) Signal based Hand Gesture Recognition using Artificial Neural Network(ANN)", In Proc. of 2011 Conference on Mechatronics, pp.17-19, Kuala Lumpur, Malaysia, May 2011.

피인용 문헌

  1. Lower Limb Motion Recognition Method Based on Improved Wavelet Packet Transform and Unscented Kalman Neural Network vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/5684812