DOI QR코드

DOI QR Code

Lack of Associations between TNF-α Polymorphisms and Cervical Cancer in Thai women

  • Chinchai, Teeraporn (Department of Microbiology, Faculty of Medicine, Srinakharinwirot University) ;
  • Homchan, Krittaphak (Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University) ;
  • Sopipong, Watanyoo (Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University) ;
  • Chansaenroj, Jira (Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University) ;
  • Swangvaree, Sukumarn (Department of Gynecologic Oncology, National Cancer Institute) ;
  • Junyangdikul, Pairoj (Department of Pathology, Samitivej Srinakharin Hospital, Bangkok Hospital Group) ;
  • Vongpunsawad, Sompong (Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University) ;
  • Poovorawan, Yong (Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University)
  • 발행 : 2016.04.11

초록

The risk of developing cervical cancer in women infected with human papillomavirus (HPV) may be influenced by an individual's genetic susceptibility. Published data linking single nucleotide polymorphisms (SNPs) in the tumor necrosis factor-alpha (TNF-${\alpha}$) promoter region at positions -308G>A (rs1800629) and -238G>A (rs361525) to cervical cancer risk have been inconclusive. In this study, we examined 251 cervical specimens and classified them into two groups according to their cytological findings: 121 cancer cases and 130 controls (low-grade squamous intraepithelial lesion and normal cytology). All specimens were typed by PCR and sequencing for TNF-${\alpha}$ promoter -308G>A (rs1800629) and -238G>A (rs361525). The genotype distribution of SNPs in either rs1800629 or rs361525 did not significantly demonstrate higher frequency in the cancer group (p=0.621 and p=0.68, respectively). Based on these results, neither the TNF-${\alpha}$ promoter -308G>A (rs1800629) nor the -238G>A (rs361525) polymorphism presents a major risk factor for cervical cancer among Thai women. Larger studies are necessary to elucidate possible genetic mechanisms influencing cervical cancer development.

키워드

참고문헌

  1. Bazzoni F, Beutler B (1996). The tumor necrosis factor ligand and receptor families. N Engl J Med, 334, 1717-25. https://doi.org/10.1056/NEJM199606273342607
  2. Bequet-Romero M, Lopez-Ocejo O (2000). Angiogenesis Modulators Expression in Culture Cell Lines Positives for HPV-16 Oncoproteins. Biochem Biophys Res Commun, 277, 55-61. https://doi.org/10.1006/bbrc.2000.3628
  3. Beutler B, Bazzoni F (1998). TNF, apoptosis and autoimmunity: a common thread? Blood Cells Mol Dis, 24, 216-30. https://doi.org/10.1006/bcmd.1998.0187
  4. Bornstein J, Rahat MA, Abramovici H (1995). Etiology of cervical cancer: current concepts. Obstet Gynecol Surv, 50, 146-54. https://doi.org/10.1097/00006254-199502000-00027
  5. Bosch FX, de Sanjose S (2003) Chapter 1: human papillomavirus and cervical cancer-burden and assessment of causality. J Natl Cancer Inst Monogr, 31, 3-13.
  6. Bosch FX, Lorincz A, Munoz N, et al (2002). The causal relation between human papillomavirus and cervical cancer. J Clin Pathol, 55, 244-65. https://doi.org/10.1136/jcp.55.4.244
  7. Brinkman BM, Zuijdeest D, Kaijzel EL, et al (1995). Relavance of the tumor necrosis factor alpha (TNF alpha)-308 promoter polymorphism in TNF alpha gene regulation. J Inflamm, 46, 32-41.
  8. Chansaenroj J, Theamboonlers A, Junyangdikul P, et al (2013). Polymorphisms in TP53 (rs1042522), p16 (rs11515 and rs3088440) and NQO1 (rs1800566) genes in Thai cervical cancer patients with HPV16 infection. Asian Pac J Cancer Prev, 14, 341-6. https://doi.org/10.7314/APJCP.2013.14.1.341
  9. Chin'ombe N, Sebata NL, Ruhanya V, et al (2014). Human papillomavirus genotypes in cervical cancer and vaccination challenges in Zimbabwe. Infect Agent Cancer, 9, 16. https://doi.org/10.1186/1750-9378-9-16
  10. Deshpande A, Nolan JP, White PS, et al (2005). TNF-alpha promoter polymorphisms and susceptibility to human papillomavirus 16-associated cervical cancer. J Infect Dis, 191, 969-76. https://doi.org/10.1086/427826
  11. Dranoff G (2004). Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 4, 11-22. https://doi.org/10.1038/nrc1252
  12. Eksteen JA, Scott PA, Perry I, et al (2001). Inflammation promotes Barrett's metaplasia and cancer : a unique role for TNF-alpha. Eur J Cancer Prev, 10, 163-6. https://doi.org/10.1097/00008469-200104000-00008
  13. Ermel A, Ramogola-Masire D, Zetola N, et al (2014). Invasive cervical cancers from women living in the United States or Botswana: differences in human papillomavirus type distribution. Infect Agent Cancer, 9, 22. https://doi.org/10.1186/1750-9378-9-22
  14. Ferlay J, Soerjomataram I, Dikshit R, et al (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 136, 359-86. https://doi.org/10.1002/ijc.29210
  15. Fong CL, Siddiqui AH, Mark DF, et al (1994). Identification and characterization of a novel repressor site in the human tumor necrosis factor alpha gene. Nucleic Acids Res, 22, 1108-14. https://doi.org/10.1093/nar/22.6.1108
  16. Hajeer AH, Hutchinson IV (2000). TNF-alpha gene polymorphism: clinical and biological implications. Microsc Res Tech, 50, 216-28. https://doi.org/10.1002/1097-0029(20000801)50:3<216::AID-JEMT5>3.0.CO;2-Q
  17. Kohaar I, Thakur N, Salhan S, et al (2007). TNFalpha-308G/A polymorphism as a risk factor for HPV associated cervical cancer in Indian population. Cell Oncol, 29, 249-56.
  18. Kroeger KM, Carville KS, Abraham LJ (1997). The-308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol Immunol, 34, 391-9. https://doi.org/10.1016/S0161-5890(97)00052-7
  19. Kroeger KM, Steer JH, Joyce DA, et al (2000). Effects of stimulus and cell type on the expression of the -308 tumour necrosis factor promoter polymorphism. Cytokine, 12, 110-9. https://doi.org/10.1006/cyto.1999.0529
  20. Luthra UK, Prabhakar AK, Seth P, et al (1987). Natural history of precancerous and early cancerous lesions of the uterine cervix. Acta Cytol, 31, 226-34.
  21. Pan F, Tian J, Ji CS, et al (2012). Association of TNF-${\alpha}$-308 and-238 polymorphisms with risk of cervical cancer : a meta-analysis. Asian Pac J Cancer Prev, 13, 5777-83. https://doi.org/10.7314/APJCP.2012.13.11.5777
  22. Pooja S, Francis A, Bid HK, et al (2011). Role of ethnic variations in TNF-${\alpha}$ and TNF-${\beta}$ polymorphisms and risk of breast cancer in India. Breast Cancer Res Treat, 126, 739-47. https://doi.org/10.1007/s10549-010-1175-6
  23. Shih CM, Lee YL, Chiou HL, et al (2006). Association of TNF-alpha polymorphism with susceptibility to and severity of non-small cell lung cancer. Lung Cancer, 52, 15-20. https://doi.org/10.1016/j.lungcan.2005.11.011
  24. Shishodia S, Majumdar S, Banerjee S, et al (2003). Ursolic acid inhibits nuclear factor- kappa B activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res, 63, 4375-83.
  25. Snijders PJ, Peto J, Meijer CJ, et al (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 189, 12-9. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
  26. Sousa H, Breda E, Santos AM, et al (2011). Genetic risk markers for nasopharyngeal carcinoma in Portugal: tumor necrosis factor alpha -308G >A polymorphism. DNA Cell Biol, 30, 99-103. https://doi.org/10.1089/dna.2010.1086
  27. Tjiong MY, van der Vange N, ter Schegget JS, et al (2001). Cytokines in cervicovaginal washing fluid from patients with cervical neoplasia. Cytokine, 14, 357-60. https://doi.org/10.1006/cyto.2001.0909
  28. Wilson AG, de Vries N, Pociot F, et al (1993). An allelic polymorphism within the human tumor necrosis factor ${\alpha}$ promoter region is strongly associated with HLA-A1, B8, DR3 alleles. J Exp Med, 177, 557-60. https://doi.org/10.1084/jem.177.2.557
  29. Wilson AG, di Giovine FS, Blakemore AI, et al (1992). Single base polymorphism in the human tumour necrosis factor alpha (TNF-${\alpha}$) gene detectable by Ncol restriction of PCR product. Hum Mol Genet, 1, 353.
  30. Woodworth CD, Mumullin E, Iglesias M, et al (1995). Interleukin la and tumor necrosis factor a stimulate autocrine amphiregulin expression and proliferation of human papillomavirus-immortalized and carcinoma-derived cervical epithelial cells. Proc Natl Acad Sci, 92, 2840-44. https://doi.org/10.1073/pnas.92.7.2840