DOI QR코드

DOI QR Code

메쉬 병합을 통한 관상동맥의 삼각 표면 메쉬 모델 생성

Generation of Triangular Mesh of Coronary Artery Using Mesh Merging

  • 투고 : 2015.10.01
  • 심사 : 2015.12.15
  • 발행 : 2016.04.15

초록

최근 관상동맥 영역화 결과로부터 삼차원 표면 모델을 생성함으로써 혈관 구조적 정보의 렌더링 효율성의 증대뿐만 아니라 전산유체역학를 이용한 혈류 역학 시뮬레이션을 통해 혈류분획예비력과 같은 생리적 정보들을 획득하는 연구들이 활발히 진행되고 있다. 본 논문에서는 혈관 영역화 과정에서 획득한 혈관 구조 정보를 입력 데이터로 사용하여 관상동맥의 삼차원 삼각 표면 메쉬 모델을 생성하는 방법을 제안한다. 관상동맥 영역화 결과로부터 삼각형 표면 메쉬 모델을 만드는 방법으로는 Marching cube 알고리즘에 기반한 방법들이 있지만 이산적인 영상 공간에서 수행되는 알고리즘으로 가늘고 다양한 굴곡을 갖는 혈관 경계를 표현하기 힘들다. 제안된 방법은 관상동맥 영역화 과정에서 추정한 혈관 중심좌표와 법선 벡터 그리고 직경 정보를 이용하여 기존 방법들보다 정교하게 단일 혈관 가닥들에 대한 삼각 표면 메쉬들을 생성하고 분기가 일어나 중첩되는 메쉬들은 메쉬 병합 기법을 사용하여 처리함으로써 통합된 관상동맥 메쉬를 생성한다.

Generating a 3D surface model from coronary artery segmentation helps to not only improve the rendering efficiency but also the diagnostic accuracy by providing physiological informations such as fractional flow reserve using computational fluid dynamics (CFD). This paper proposes a method to generate a triangular surface mesh using vessel structure information acquired with coronary artery segmentation. The marching cube algorithm is a typical method for generating a triangular surface mesh from a segmentation result as bit mask. But it is difficult for methods based on marching cube algorithm to express the lumen of thin, small and winding vessels because the algorithm only works in a three-dimensional (3D) discrete space. The proposed method generates a more accurate triangular surface mesh for each singular vessel using vessel centerlines, normal vectors and lumen diameters estimated during the process of coronary artery segmentation as the input. Then, the meshes that are overlapped due to branching are processed by mesh merging and merged into a coronary mesh.

키워드

참고문헌

  1. AChenbaCh, Stephan, et aI., "Curved multiplanar reconstructions for the evaluation of contrast-enhanced electron beam CT of the coronary arteries," AJR, American journal of roentgenology, Vol. 170, No.4, pp.895-899, 1998. https://doi.org/10.2214/ajr.170.4.9530029
  2. Kanitsar, Armin, et aI., "CPR-curved planar reformation," IEEE, pp.37-44, 2002.
  3. Steinman, David A., "Image-based computational fluid dynamics modeling in realistic arterial geometries," Annals of biomedical engineering, Vol. 30, No. 4, pp.483-497, 2002. https://doi.org/10.1114/1.1467679
  4. Steinman, D. A., D. A. Vorp, and C. R. Ethier, "Computational modeling of arterial biomechanics: in sights into pathogenesis and treatment of vascular disease," Journal of Vascular Surgery, Vol. 37, No.5, pp. 1118-1128, 2003. https://doi.org/10.1067/mva.2003.122
  5. Soulis, Johannes V., et aI., "Wall shear stress in normal left coronary artery tree," Journal of Biomechanics, Vol. 39, No.4, pp.742-749, 2006. https://doi.org/10.1016/j.jbiomech.2004.12.026
  6. Lorensen, William E., and Harvey E. Cline, "Marching cubes: A high resolution 3D surface construction algorithm," ACM siggraph computer graphics, Vol. 21, No.4, pp.163-169, 1987. https://doi.org/10.1145/37402.37422
  7. Newman, Timothy S., and Hong Yi, "A survey of the marching cubes algorithm," Computers and Graphics, Vol. 30, No.5, pp.854-879, 2006. https://doi.org/10.1016/j.cag.2006.07.021
  8. Kobbelt, Leif P., et aI, "Feature sensitive surface extraction from volume data," Proc. of the 28th annual conference on Computer graphics and interactiue techniques. ACM, pp.57-66, 2001.
  9. Zhao, Fei, and Rahul Bhotika, "Coronary artery tree tracking with robust junction detection in 3D CT angiography," Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on. IEEE, pp.2066-2071, 2011.
  10. Klok, Fopke, "Two moving coordinate frames for sweeping along a 3D trajectory," Computer Aided Geometric Design, Vol. 3, No.3, pp.217-229, 1986. https://doi.org/10.1016/0167-8396(86)90039-7
  11. Gottschalk, Stefan, Ming C. Lin , and Dinesh Manocha, "OBBTree: A hierarchical structure for rapid interference detection," Froc. of the 23rd annual conference on Computer graphics and interactive techniques. ACM, pp.171-180, 1996.
  12. Moller, Tomas, "A fast triangle-triangle intersection test," Journal of graphics tools, Vol. 2, No.2, pp.25-30, 1997. https://doi.org/10.1080/10867651.1997.10487472
  13. Fang, Tsung-Pao, and Les Piegl, "Delaunay triangulation in three dimensions," Computer Graphics and Applications, IEEE, Vol. 15, No.5, pp.62-69, 1995.