DOI QR코드

DOI QR Code

Effect of Extractant on the Color Characteristics of Natural Colorant Extracts

천연색소의 색 특성에 미치는 추출용매의 영향

  • Lee, Young-Hee (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Park, Young-Kwang (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Baek, Young-Mee (Korean Traditional Costume Research Institute, Pusan National University) ;
  • Kim, Jung-Soo (Korea Institute of Footwear and Leather Technology) ;
  • Lee, Dong-Jin (Korea Institute of Footwear and Leather Technology) ;
  • Kim, Han-Do (Department of Organic Material Science and Engineering, Pusan National University)
  • 이영희 (부산대학교 유기소재시스템공학과) ;
  • 박영광 (부산대학교 유기소재시스템공학과) ;
  • 백영미 (부산대학교 한국전통복식연구소) ;
  • 김정수 (한국신발피혁연구원) ;
  • 이동진 (한국신발피혁연구원) ;
  • 김한도 (부산대학교 유기소재시스템공학과)
  • Received : 2016.02.24
  • Accepted : 2016.03.10
  • Published : 2016.03.27

Abstract

Natural colorant extracts were obtained by extraction from tumeric root, gardenia seeds, mugwort and green tea using water, methanol, ethanol and acetone as extractants at room temperature for 3 hours under shaking condition(180rpm) with liquor ratio(solid:solvent; 1:100). The main pigment components of tumeric root, gardenia seeds, mugwort and green tea are known to be curcumin, crocin, chlorophyll b and epigallocatechin gallate, respectively. The effects of the kind of extractant and pH on the color characteristics of natural colorant extracts were investigated. The solubility parameters of pigment components were determined to find adequate extractant. The solubility parameters of curcumin, crocin, chlorophyll b and epigallocatechin gallate were found to be 27.85, 29.40, 19.48 and $37.97(J/cm^3)^{1/2}$. As expected, solvents that have a solubility parameter similar to that of pigment component were generally found to be effective to obtain pigment extracts having high visible absorbance(A). The extract(pigment/solvent) with high visible absorbance was generally found to have low $L^*$(lightness) and high Chroma($C^*$, purity).

Keywords

References

  1. S. Billmeyer, "Principles ofColor Technology, 2nd ed.", JohnWiley and Sons, Inc., USA, pp.1-23, 1981.
  2. M. Choi, D. I. Yoo, and Y. S. Shin, Preparation of Lip Balm Utilizing Functionalities of Colorants Extracted from Marine Algae, Textile Coloration and Finishing, 26(2), 124(2014). https://doi.org/10.5764/TCF.2014.26.2.124
  3. Y. H. Lee, E. K. Hwang, Y. M. Baek, and H. D. Kim, Deodorizing Function andAntibacterialActivity of FabricsDyedwithGallnut( GallaChinensis) Extract, Textile Research J., 85, 1045(2015). https://doi.org/10.1177/0040517514559580
  4. K. R. Cho, "Natural Dyestuff and Dyeing", Hyungseul, Seoul, pp.65-114, 2004.
  5. I. P. Kavirayyani, The Chemistry of Curcumin: From Extraction to TherapeuticAgent, Molecules, 19, 20091(2014). https://doi.org/10.3390/molecules191220091
  6. I. K. Hong, H. Hyen, and S. B. Lee, Extraction ofNatural Dye fromGardenia and ChromaticityAnalysisAccording to Chi Parameter, J. of Industrial and Engineering Chemistry, 24, 326(2015). https://doi.org/10.1016/j.jiec.2014.10.004
  7. C. Yang, C. Le, Z. Can, X. H. Chuan, C. C. Yong, L. Ying, J. Lin, Y. H. Xiang, C. Chu, and Z. Hao, Spectroscopic, Stability andRadical-Scavenging Properties of a Novel Pigment from Gardenia, Food Chemistry, 109, 269(2008). https://doi.org/10.1016/j.foodchem.2007.10.023
  8. S. Benoit, Chlorophyll andCarotenoidAnalysis in Food Products, Properties of the Pigments and Methods of Analysis, Trend in Food Science and Technology, 13, 361(2002). https://doi.org/10.1016/S0924-2244(02)00182-6
  9. B. H. KimandW. S. Song, TheDyeability andAntibacterial Activity of Artemisia Princeps Extracts, Textile Coloration and Finishing, 11(5), 30(1999).
  10. A. Masek, E. Chrzescijanska, A. Kosmalska, and M. Zaborski, AntioxidantActivityDetermination in Sencha and Gun Powder Green Tea Extracts with the Application of Voltammentary andUV-VIS Spectrophotometry, C. R. Chimie, 15, 424(2012). https://doi.org/10.1016/j.crci.2012.01.005
  11. S. Vladislav, N. Y. Michael, M. S. M. Ross, and P. R. David, The Spectral Properties of (-)Epigallocatechine3- O-Gallate(EGCG) Fluorescence in Different Solvents: Dependence on Solvent Polarity, PLOS ONE, 8(11), e79834(2013). https://doi.org/10.1371/journal.pone.0079834
  12. S. H. Kim, Ultraviolet Protection Property ofGreen Tea ExtractDyed Fabrics, Textile Coloration and Finishing, 18(6), 80(2006).
  13. J. H. Hildebrand andR. L. Scott, "The Solubility ofNonelectrolytes, 3rd ed.", Reinhold, New York, 1950.
  14. J. H. Hildebrand and R. L. Scott, "Regular Solutions", Prentice-Hall, Englewood Cliffs, NJ, 1962.
  15. A. F. M. Barton, "CRC Handbook of Solubility Parameters and Other Cohesion Parameters", CRC Press Inc., Boca Raton, Florida, p.8, 1983.
  16. R. F. Fedors, The Method for Estimating Both the Solubility Parameters andMolarVolumes of Liquids, Polymer Engineering and Science, 14(2), 147(1974). https://doi.org/10.1002/pen.760140211
  17. J. Ramya, M. A. Priya, and P. Pankaj, Temperature-Dependent Spectroscopy Evidences of Curcumin inAqueousMedium: AMechanistic Study of Its Solubility and Stability, The J. of Physical Chemistry B., 116, 14533 (2012). https://doi.org/10.1021/jp3050516
  18. C. M. Hansen, "Hansen Solubility Parameters: AUser's Handbook, 2nd ed.", CRCPress, BocaRaton, p.2, 2007.
  19. L. Brigita, P. Mirko, and G. W. Alenka, Comparison of Prepared from Plant by-products Using Different Solvents and Extraction Time, J. of Engineering, 71, 214 (2005).
  20. S. W. Chan, C. Y. Lee, C. F. Yap, W. M. W. Aida, and C. W. Ho, Optimisation of Extraction Conditions for Phenolic Compounds fromLimau Purut(Citrus hystrix) Peels, International Food Research J., 16, 203(2009).

Cited by

  1. Evaluation of Hygienic Properties and Effects of Printing on Curcuma- and Coffee-Dyed Cotton Fabrics vol.28, pp.1, 2017, https://doi.org/10.7856/kjcls.2017.28.1.143
  2. The Dyeing Properties and Functionality of Water Lily(Nymphaea tetragona) Leaves Extract as a New Natural Dye Resource(1): Dyeing of Cotton Fiber vol.28, pp.4, 2016, https://doi.org/10.5764/TCF.2016.28.4.290