DOI QR코드

DOI QR Code

Height Datum Transformation using Precise Geoid and Tidal Model in the area of Anmyeon Island

정밀 지오이드 및 조석모델을 활용한 안면도 지역의 높이기준면 변환 연구

  • Roh, Jae Young (Department of Hydrography, Pukyong National University) ;
  • Lee, Dong Ha (Department of Civil Engineering, Kangwon National University) ;
  • Suh, Yong Cheol (Department of Civil Engineering, Pukyong National University)
  • 노재영 (부경대학교 수로학연협동과정) ;
  • 이동하 (강원대학교 토목공학과) ;
  • 서용철 (부경대학교 토목공학과)
  • Received : 2016.03.07
  • Accepted : 2016.03.11
  • Published : 2016.03.31

Abstract

The height datum of Korea is currently separated into land and sea, which makes it difficult to acquire homogeneous and accurate height information throughout the whole nation. In this study, we therefore tried to suggest the more effective way to transform the height information were constructed separately according to each height datum on land and sea to those on the unique height datum using precise geoid models and tidal observations in Korea. For this, Anmyeon island was selected as a study area to develop the precise geoid models based on the height datums land (IMSL) and sea (LMSL), respectively. In order to develop two hybrid geoid models based on each height datum of land an sea, we firstly develop a precise gravimetric geoid model using the remove and restore (R-R) technique with all available gravity observations. The gravimetric geoid model were then fitted to the geometric geoidal heights, each of which is represented as height datum of land or sea respectively, obtained from GPS/Leveling results on 15 TBMs in the study area. Finally, we determined the differences between the two hybrid geoid models to apply the height transformation between IMSL and LMSL. The co-tidal chart model of TideBed system developed by Korea Hydrographic and Oceanographic Agency (KHOA) which was re-gridded to have the same grid size and coverage as the geoid model, in order that this can be used for the height datum transformation from LMSL to local AHHW and/or from LMSL to local DL. The accuracy of height datum transformation based on the strategy suggested in this study was approximately ${\pm}3cm$. It is expected that the results of this study can help minimize not only the confusions on the use of geo-spatial information due to the disagreement caused by different height datum, land and sea, in Korea, but also the economic and time losses in the execution of coastal development and disaster prevention projects in the future.

현재 우리나라의 국가수직체계는 육상과 해상에서 서로 다른 높이기준면을 채용하고 있어, 국가 전체에 걸쳐 일관되고, 정확한 높이정보를 취득하기 어려운 문제가 있다. 이에 따라 본 연구에서는 정밀한 지오이드모델과 조석관측자료를 활용하여 육상과 해상 높이기준면에 따라 별도 구축된 공간정보를 단일한 높이기준면 상으로 변환할 수 있는 효율적인 방안을 제시하고자 하였다. 이를 위해 연구의 대상지역으로 안면도 일원을 선정하고, 연구대상지역에 대한 육상 및 해상 높이기준면 기반의 정밀지오이드모델을 각각 개발하였다. 지오이드모델 개발은 R-R 기법을 통한 중력지오이드모델 계산 후 대상지역 내 BM 및 TBM에 대하여 수행된 총 15점의 GPS/Leveling 자료를 이용하여 육상 및 해상 기준 합성지오이드모델로 적합(fitting)하였다. 최종적으로 개발된 두 합성지오이드모델 간의 편차를 계산하여 인천만 평균해면(IMSL)과 지역별 평균해면에서 지역별 약최고고위면(AHHW)과 약최저저조면(DL) 간의 변환에는 국립해양조사원에서 개발한 조석보정체계(TideBed System)의 등조차모델을 지오이드모델과 동일한 격자간격으로 재격자화하여 적용하였다. 본 연구를 통해 개발된 안면도 지역의 높이기준면 변환 모델의 정확도는 약 ${\pm}3cm$ 정도로 분석되었다. 향후 본 연구 결과의 활용 시 다양한 높이측량 성과들을 인천만 평균해면 혹은 지역별 조석기준면 상 높이로 간편 정확하게 변환할 수 있어, 육 해상 높이기준면에 따라 개별적으로 구축된 공간정보의 연계 시 높이 불일치로 인한 혼란과 공간정보를 활용한 연안지역 개발 및 해양방재 수행 시 경제적, 시간적 손실을 최소화할 수 있을 것으로 기대된다.

Keywords

References

  1. Amante, C. and Eakins, B. W., 2009, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24.
  2. Amos, M. J. and Featherstone, W. E., 2009, Unification of New Zealand's Local Vertical Data: Iterative Gravimetric Quasigeoid Computations, Journal of Geodesy, Vol. 83, pp. 57-68. https://doi.org/10.1007/s00190-008-0232-y
  3. Ardalan, A. A. and Safari, A., 2005, Global Height Datum Unification: A New Approach in Gravity Potential Space, Journal of Geodesy, Vol. 79, pp. 512-523. https://doi.org/10.1007/s00190-005-0001-0
  4. Choo, H. S. and Kim, D. S., 2013, Tide and Tidal Currents Around the Archipelago on the Southwestern Waters of the South Sea, Korea, Journal of the Korean Society of Marine Environment & Safety, Vol. 19, No. 6, pp. 582-596. https://doi.org/10.7837/kosomes.2013.19.6.582
  5. Ekman, M., 1999, Using Mean Sea Surface Topography for the Determination of Height System Differences across the Baltic Sea, Marine Geodesy, Vol. 22, pp. 31-35. https://doi.org/10.1080/014904199273588
  6. Featherstone, W. E., 2000, Towards Unification of the Australian Height Datum between the Australian Mainland and Tasmania using GPS and the AUSGeoid98 Geoid Model, Geomat Res Australas, Vol. 73, pp. 33-54.
  7. Forsberg R., 1984, Terrain Corrections for Gravity Measurements, Master's thesis, University of Calgary, Canada.
  8. Forsberg, R., Tscherning, C. C. and Knudsen, P., 2003, An Overview Manual of the GRAVSOFT Geodetic Gravity Field Modelling Programs, Danish National Space Center, Denmark.
  9. Heiskanen, W. A. and Moritz, H., 1967, Physical Geodesy, W.H. Freeman and Co, USA.
  10. Hipkin, R. G., 2002, Vertical Datum defined by Wo = Uo: Theory and Practice of a Modern Height System, Proc. of 3rd meeting of the International Gravity and Geoid Commission, International Association of Geodesy, Thessaloniki, Greece, pp. 26-30.
  11. Huang, H., Yun, H. S., Lee, D. H. and Jeong, T. J., 2009, Accuracy Analysis of Ultra-high degree Earth Gravitational Model EGM2008 in South Korea, Journal of the Korean Society of Civil Engineers, Vol. 29, No. 1D, pp. 161-166.
  12. Jekeli, C., 2003, On Monitoring a Vertical Datum with Satellite Altimetry and Water-level Gauge Data on Large Lakes, Journal of Geodynamics, Vol. 77, pp. 447-453.
  13. Kim, Y. H., Huh, R., Han, J. S. and Lee, C. H., 2013, A Study on Improvement of Automatic Tide Correction System, Korean Journal of Hydrography, Vol. 2, No. 1, pp. 127-135.
  14. Korean Hydrographic and Oceanographic Agency (KHOA), 2015, Management and Improvement of TideBed System, Technical Report.
  15. Kuroishi, Y., Ando, H. and Fukuda, Y., 2002, A New Hybrid Geoid Model for Japan, GSIGEO2000, Journal of Geodesy, Vol. 76, pp. 428-436. https://doi.org/10.1007/s00190-002-0266-5
  16. Lee, D. H., 2008, Development of High-Precision Hybrid Geoid Model in Korea, Doctoral thesis, Sungkyunkwan University, Korea.
  17. Lee, D. H., Yun, H. S., Hwang, J. S. and Suh, Y. C., 2012, Transformation Model of Vertical Datum between Land and Ocean Height System using the Precise Spirit Leveling Results, Journal of the Korean Society of Civil Engineers, Vol. 32, No. 4D, pp. 407-419. https://doi.org/10.12652/Ksce.2012.32.4D.407
  18. Lee, D. H., Yun, H. S., Jung H. I., Cho, J. M., Cho, J. H., Jung W. C. and Hwang, J. S., 2013, Transformation of Vertical Datum Surface in the Coastal Area using Hybrid Geoid Models, Journal of Coastal Research, Special Issue No. 65, pp. 1427-1432.
  19. Lee D. H., Yun, H. S. and Suh Y. C., 2011, Comparison between FFT and LSC Method for the Residual Geoid Height Modeling in Korea, Journal of the Korean Society of Civil Engineers, Vol. 31, No. 2D, pp. 323-334.
  20. Lee, S. B. and Auh, S. C., 2015, Accuracy Analysis of GPS Ellipsoidal Height Determination in Accordance with the Surveying Conditions, Journal of the Korean Society for Geospatial Information Science, Vol. 23, No. 4, pp. 67-74.
  21. Lee, S. B., Kim, J. S. and Kim, C. Y., 2008, Evaluation of EGM2008 Earth Geopotential Model using GPS/leveling Data, Journal of the Korean Society for Geospatial Information Science, Vol. 16, No. 3, pp. 117-126.
  22. Nikolaidis, R., 2002, Observation of Geodetic and Seismic Deformation with the Global Positioning System, Doctoral thesis, University of California, USA.
  23. Pavlis, N. K., Holmes, S. A., Kenyon, S. C. and Factor, J. K., 2008, An Earth Gravitational Model to Degree 2160: EGM2008, Proc. of the ed. at the 2008 General Assembly of the European Geosciences Union, European Geosciences Union, Vienna, Austria, pp. 13-18.
  24. Rapp, R. H., 1995, A World Vertical Datum Proposal. Allgemeine Vermessungs-Nachrichten, Vol. 102, pp. 297-304.
  25. Rummel, R., 2000, Global Unification of Height Systems and GOCE, In: Sideris, M. G. (ed.), International Association of Geodesy Symposia: Gravity, Geoid and Geodynamics 2000, Springer-Verlag, Berlin, Germany, Vol. 123, pp. 15-20.
  26. Sacerdote, F. and Sanso, F., 2001, W0: A Story of the Height Datum Problem, In: Wiss. Arbeiten der Fachr. Vermessungswesen der Univ. Hannover Nr. 241, University of Hannover, Germany.
  27. Yun, H. S., 1999, Precision geoid determination by spherical FFT in and around the Korean peninsula. Earth Planets and Space, Vol. 51, pp. 13-18. https://doi.org/10.1186/BF03352204
  28. Zhang, L., Li, F., Chen, W. and Zhang, C., 2009, Height Data Unification between Shenzhen and Hong Kong using the Solution of the Linearized Fixed-Gravimetric Boundary Value Problem. Journal of Geodesy, Vol. 83, pp. 411-417. https://doi.org/10.1007/s00190-008-0234-9