DOI QR코드

DOI QR Code

A Study on Scale Effects of the MAUP According to the Degree of Spatial Autocorrelation - Focused on LBSNS Data -

공간적 자기상관성의 정도에 따른 MAUP에서의 스케일 효과 연구 - LBSNS 데이터를 중심으로 -

  • Lee, Young Min (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kwon, Pil (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Yu, Ki Yun (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Huh, Yong (LX Spatial Information Research Institute)
  • 이영민 (서울대학교 공과대학 건설환경공학부) ;
  • 권필 (서울대학교 공과대학 건설환경공학부) ;
  • 유기윤 (서울대학교 공과대학 건설환경공학부) ;
  • 허용 (대한지적공사 공간정보연구원)
  • Received : 2016.01.20
  • Accepted : 2016.03.01
  • Published : 2016.03.31

Abstract

In order to visualize point based Location-Based Social Network Services(LBSNS) data on multi-scaled tile map effectively, it is necessary to apply tile-based clustering method. Then determinating reasonable numbers and size of tiles is required. However, there is no such criteria and the numbers and size of tiles are modified based on data type and the purpose of analysis. In other words, researchers' subjectivity is always involved in this type of study. This is when Modifiable Areal Unit Problem(MAUP) occurs, that affects the results of analysis. Among LBSNS, geotagged Twitter data were chosen to find the influence of MAUP in scale effects perspective. For this purpose, the degree of spatial autocorrelation using spatial error model was altered, and change of distributions was analyzed using Morna's I. As a result, positive spatial autocorrelation showed in the original data and the spatial autocorrelation was decreased as the value of spatial autoregressive coefficient was increasing. Therefore, the intensity of the spatial autocorrelation of Twitter data was adjusted to five levels, and for each level, nine different size of grid was created. For each level and different grid sizes, Moran's I was calculated. It was found that the spatial autocorrelation was increased when the aggregation level was being increased and decreased in a certainpoint. Another tendency was found that the scale effect of MAUP was decreased when the spatial autocorrelation was high.

포인트 속성의 위치 기반 소셜 네트워크 서비스(Location-Based Social Network Services, LBSNS) 데이터를 멀티스 케일의 타일맵상에 효과적으로 시각화하기 위해서는 격자 기반으로 군집화하여 표현해야 할 필요성이 있다. 이때 격자의 크기 및 개수를 결정해야 하는데, 이에 대한 기준은 정해진 것이 없으며 데이터의 종류와 분석 목적에 따라 달라지므로 연구자의 주관이 개입될 수밖에 없다. 이때 연구 결과에 영향을 끼치는 공간단위 임의성의 문제(Modifiable Areal Unit Problem, MAUP)가 발생한다. 본 연구에서는 LBSNS 중 지오태깅(geotagging)된 트위터(Twitter) 데이터를 대상으로 하여 이러한 MAUP의 영향을 스케일 효과(scale effect)의 측면에서 탐색해 보고자 하였다. 이를 위해 공간오차모델(spatial error model)을 이용하여 데이터의 공간적 자기상관성(spatial autocorrelation)의 정도를 조절하였으며, 이에 대해 격자의 크기를 달리함에 따른 공간적 자기상관성의 변화를 Moran's I를 통해 분석하였다. 실험 결과, 원 데이터에는 양의 공간적 자기상관성이 존재하는 것을 확인하였으며, 이러한 경우에는 공간오차모델의 공간자기회귀계수(spatial autoregressive coefficient)의 값이 증가할수록 공간적 자기상관성이 감소하는 것을 알 수 있었다. 이러한 특성을 이용하여 트위터 데이터의 공간적 자기상관성의 강도를 5단계로 조절하였으며, 각 단계에 대하여 격자의 크기를 9단계로 나누어 각각에서의 Moran's I를 계산하였다. 그 결과, 합역 수준이 높아질수록 공간적 자기상관성이 증가하다가 격자의 크기가 600m에서 1,000m 사이일 때 감소하는 것을 알 수 있었으며, 공간적 자기상관성이 강할수록 MAUP에서의 스케일 효과는 감소하는 경향이 있는 것을 확인하였다.

Keywords

References

  1. Anselin, L., 1995, Local indicators of spatial association-LISA, Geographical Analysis, Vol. 27, No. 2, pp. 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  2. Can, A., 1996, Weight matrices and spatial autocorrelation statistics using a topological vector data model, International Journal of Geographical Information Systems, Vol. 10, No. 8, pp. 1009-1017. https://doi.org/10.1080/02693799608902122
  3. Cheong, J. S. and Park, J. H., 2015, Test of the scale effect of MAUP in crime study: analyses of sex crime using nation-wide data of eup-myon-dong and si-gun-gu, The Journal of the Korea Contents Association, Vol. 15, No. 10, pp. 150-159. https://doi.org/10.5392/JKCA.2015.15.10.150
  4. Cho, D. H., 2013, Trends and methodological issues in spatial cluster analysis for count data. Journal of the Korean Geographical Society, Vol. 48, No. 5, pp. 768-785.
  5. Doreian, P., 1981, Estimating linear models with spatially distributed data, Sociological Methodology 12, pp. 359-388. https://doi.org/10.2307/270747
  6. Getis, A., 2010, Spatial autocorrelation, In Handbook of applied spatial analysis, Springer Berlin Heidelberg, pp. 255-278.
  7. He, Z., Zhao, W. and Chang, X., 2007, The modifiable areal unit problem of spatial heterogeneity of plant community in the transitional zone between oasis and desert using semivariance analysis, Landscape Ecology, Vol. 22, No. 1, pp. 95-104. https://doi.org/10.1007/s10980-006-9003-4
  8. Jelinski, D. E. and Wu, J., 1996, The modifiable areal unit problem and implications for landscape ecology, Landscape Ecology, Vol. 11, No. 3, pp. 129-140. https://doi.org/10.1007/BF02447512
  9. Jung, D. Y. and Son, Y. G., 2009, A analysis on the spatial features of the neighborhood trade area using positive spatial autocorrelation method, Journal of the Korean Society for Geospatial Information System, Vol. 17, No. 1, pp.141-147.
  10. Kwan, M. P. and Weber, J., 2008, Scale and accessibility: Implications for the analysis of land use-travel interaction, Applied Geography, Vol. 28, No. 2, pp. 110-123. https://doi.org/10.1016/j.apgeog.2007.07.002
  11. Lee, S. I., 1999, The delineation of function regions and Modifiable Areal Unit Problem(MAUP), Journal of Geographic and Environmental Education, Vol. 7, No. 2, pp. 757-783.
  12. Lee, S. I., 2001, Developing a bivariate spatial association measure: an integration of Pearson's r and Moran's I, Journal of Geographical Systems, Vol. 3, No. 4, pp. 369-385. https://doi.org/10.1007/s101090100064
  13. Lee, S. I., 2007, Spatial statistical approach to residential differentiation (I): Developing a spatial separation measure, Journal of the Korean Geographical Society, Vol. 42, No. 4, pp. 616-631.
  14. Lee, G. H. and Kim. K. Y., 2013, A study on the spatial mismatch between the assessed land value and housing market price: Exploring the scale effect of the MAUP, Journal of the Korean Geographical Society, Vol. 48, No. 6, pp. 879-896.
  15. Moran, P. A., 1950, Notes on continuous stochastic phenomena, Biometrika, Vol. 37, No. 1/2, pp. 17-23. https://doi.org/10.1093/biomet/37.1-2.17
  16. Oh, C. W., 2002, Spatio-temporal analysis of land price variation considering modifiable area unit problem, The Journal of Geographic Information System Association of Korea, Vol 10. No. 2, pp. 185-199.
  17. Openshaw, S., 1984, The modifiable areal unit problem, Geo Abstracts University of East Anglia.
  18. Swift, A., Liu, L. and Uber, J., 2008, Reducing MAUP bias of correlation statistics between water quality and GI illness, Computers, Environment and Urban Systems, Vol. 32, No. 2, pp. 134-148. https://doi.org/10.1016/j.compenvurbsys.2008.01.002
  19. Tobler, W. R., 1970, A computer movie simulating urban growth in the Detroit region, Economic Geography, Vol. 46, pp. 234-240. https://doi.org/10.2307/143141
  20. Viegas, J. M. and Martinez, L. M., 2007, Effects of the modifiable areal unit problem on the delineation of traffic analysis zones, Environment and Planning, B: Planning and Design, advance online publication, pp. 1-20.

Cited by

  1. A Comparison of Regional Neighborhood Environments for Apartment Complexes in Seoul vol.5, pp.1, 2016, https://doi.org/10.30902/jrea.2019.5.1.77