DOI QR코드

DOI QR Code

Diversity Evaluation of Xylella fastidiosa from Infected Olive Trees in Apulia (Southern Italy)

  • Mang, Stefania M. (School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata) ;
  • Frisullo, Salvatore (Department of Agricultural, Food and Environmental Sciences, University of Foggia) ;
  • Elshafie, Hazem S. (School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata) ;
  • Camele, Ippolito (School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata)
  • Received : 2015.08.06
  • Accepted : 2015.12.14
  • Published : 2016.04.01

Abstract

Olive culture is very important in the Mediterranean Basin. A severe outbreak of Olive Quick Decline Syndrome (OQDS) caused by Xylella fastidiosa infection was first noticed in 2013 on olive trees in the southern part of Apulia region (Lecce province, southern Italy). Studies were carried out for detection and diversity evaluation of the Apulian strain of Xylella fastidiosa. The presence of the pathogen in olive samples was detected by PCR amplifying the 16S rDNA, gyrase B subunit (gyrB) and HL hypothetical protein genes and single nucleotide polymorphisms (SNPs) assessment was performed to genotype X. fastidiosa. Twelve SNPs were recorded over gyrB and six SNPs were found for HL gene. Less variations were detected on 16S rDNA gene. Only gyrB and HL provided sufficient information for dividing the Apulian X. fastidiosa olive strains into subspecies. Using HL nucleotide sequences was possible to separate X. fastidiosa into subspecies pauca and fastidiosa. Whereas, nucleotide variation present on gyrB gene allowed separation of X. fastidiosa subsp. pauca from the other subspecies multiplex and fastidiosa. The X. fastidiosa strain from Apulia region was included into the subspecies pauca based on three genes phylogenetic analyses.

Keywords

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nuc. Acids Res. 25:3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Cariddi, C., Saponari, M., Boscia, D., De Stradis, A., Loconsole, G., Nigro, F., Porcelli, F., Potere, O. and Martelli, G. P. 2014. Isolation of Xylella fastidiosa strain infecting olive and oleander in Apulia Italy. J. Plant Pathol. 96:1-15.
  3. Catalano, L. 2015. Xylella fastidiosa la più grave minaccia dell'olivicoltura Italiana. L'Informatore Agrario 16:36-42.
  4. Chen, J. C., Banks, D., Jarret, R. L., Chang, C. J. and Smith, B. J. 2000a. Use of the 16S rDNA sequence as signature characters to identify Xylella fastidiosa. Curr. Microbiol. 40:29-33. https://doi.org/10.1007/s002849910006
  5. Chen, J., Jarret, R. L., Qin, X., Hartung, J. S., Banks, D., Chang, C. J. and Hopkins, D. L. 2000b. 16S rSNA Sequence Analysis of Xylella fastidiosa Strains. Syst. Appl. Microbiol. 23:349-354. https://doi.org/10.1016/S0723-2020(00)80064-8
  6. Chen, J., Groves, R., Civerolo, E. J., Viveros, M., Freeman, M. and Zheng, Y. 2005. Two Xylella fastidiosa genotypes associated with almond leaf scorch disease on the same location in California. Phytopathology 95:708-714. https://doi.org/10.1094/PHYTO-95-0708
  7. Cimato, A. and Attilio, C. 2011. Chapter 1. Worldwide diffusion and relevance of olive culture. In: Olive Diseases and Disorders, eds. by L. Schena, G.E. Agosteo and S.O. Cacciola, pp. 1-23. Transworld Research Network T.C. 37/661(2), Fort P.O. Trivandrum-695 023, Kerala, India.
  8. EFSA (European Food Safety Authority), 2015. Response to scientific and technical information provided by an NGO on Xylella fastidiosa. EFSA J. 13:4082. https://doi.org/10.2903/j.efsa.2015.4082
  9. Elbeaino, T., Valentini, F., Abou Kubaa, R., Moubarak, P., Yaseen, T. and Digiaro, M. 2014. Multilocus sequence typing of Xylella fastidiosa isolated from olive affected by "olive quick decline syndrome" in Italy. Phytopathol. Medit. 53:533-542.
  10. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  11. Firrrao, G. and Bazzi, C. 1994. Specific identification of Xylella fastidiosa using the polymerase chain reaction. Phytopathol. Medit. 33:90-92.
  12. Fontanazza, G., Benites, J. (ed.), Pisante, M. and Stagnari, F. 2005. Integrated soil and water management for orchard development, role and importance. FAO Land Water Bull. 1024-6703, no.10:13-20.
  13. Francis, M., Lin, H., Cabrera-La Rosa, J., Doddapaneni, H. and Civerelo, E. L. 2006. Genome-based PCR primers for specific and sensitive detection and quantification of Xylella fastidiosa. Eur. J. Plant Pathol. 115:203-213. https://doi.org/10.1007/s10658-006-9009-4
  14. Giampetruzzi, A., Chiumenti, M., Saponari, M., Donvito, G., Italiano, A., Loconsole, G., Boscia, D., Cariddi, G., Martelli, G. P. and Saldarelli, P. 2015. Draft genome sequence of the Xylella fastidiosa CoDiRO strain. Genome Announc. 3:01538-14.
  15. Hernandez-Martinez, R., de la Cerda., K. A, Costa, H. S., Cooksey, D. A. and Wong, F. P. 2007. Phylogenetic relationships of Xylella fastidiosa strains isolated from landscape ornamentals in southern California. Phytopathology 97:857-864. https://doi.org/10.1094/PHYTO-97-7-0857
  16. Hopkins, D. L. 1989. "Xylella fastidiosa: xylem-limited bacterial pathogen of plants". Ann. Rev. Phytopathol. 27:271-290. https://doi.org/10.1146/annurev.py.27.090189.001415
  17. Hopkins, D. L. and Purcell, A. H. 2002. Xylella fastidiosa: Cause of Pierce's Disease of grapevine and other emergent diseases. Plant Dis. 86:1056-1066. https://doi.org/10.1094/PDIS.2002.86.10.1056
  18. IOC, 2009. Olive Products market report summary (No. 33, July- September 2009), Market Commentary.
  19. Janse, J. D. and Obradovic, A. 2010. Xylella fastidiosa: its biology, diagnosis, control and risks. J. Plant Pathol. 92(1 Supplement): 35-48.
  20. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
  21. Loconsole, G., Potere, O., Boscia, D., Altamura, G., Djelouah, K., Elbeaino, T., Frasheri, D., Lorusso, D., Palmisano, F., Pollastro, P., Silletti, M. R., Trisciuzzi, N., Valentini, F., Savino, V. and Saponari, M. 2014. Detection of Xylella fastidiosa in olive trees by molecular and serological methods. J. Plant Pathol. 96:7-14.
  22. Martinati, J. C., Hansen Pacheco, F. T. Oliveira de Miranda, V. F. and Tsai, S. M. 2007. 16S-23S rDNA: Polymorphisms and their use for detection and amplification of Xylella fastidiosa strains. B. J. Microbiol. 38:159-165. https://doi.org/10.1590/S1517-83822007000100033
  23. Mehta, A. and Rosato, Y. B. 2001. Phylogenetic relationships of Xylella fastidiosa strains from different hosts based on 16S rDNA and 16S-23S intergenic spacer sequences. Int. J. Sys. Evol. Microbiol. 51:311-318. https://doi.org/10.1099/00207713-51-2-311
  24. Murray, A. E., Lies, D., Li, G., Nealson, K., Zhou, J. and Tiedje, J. M. 2001. DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc. Nat. Acad. Sci. USA 98:9853-9858. https://doi.org/10.1073/pnas.171178898
  25. Nunney, L., Ortiz, B., Russell, S. A., Ruiz Sanchez, R. and Stouthamer, R. 2014. The Complex Biogeography of the Plant Pathogen Xylella fastidiosa: Genetic Evidence of Introductions and Subspecific Introgression in Central America. PLoS ONE 9:e112463. https://doi.org/10.1371/journal.pone.0112463
  26. Purcell, A. H. and Hopkins, D. L. 1996. Fastidious xylem-limited bacterial plant pathogens. Ann. Rev. Phytopathol. 3:131-151.
  27. Purcell, A. H. 2013. Paradigms: Examples from the bacterium Xylella fastidiosa. Ann. Rev. Plant Pathol. 51:229-356.
  28. Randal, J. J., Golberg, N. P., Kemp, J. P., Radionenko, M., French, J. M., Olsen M. W. and Hanson, S. F. 2009. Genetic analysis of a novel Xylella fastidiosa subspecies found in the south western United States. Appl. Environ. Microbiol. 75:5631-5638. https://doi.org/10.1128/AEM.00609-09
  29. Rodrigues, J. L. M., Silva-Stenico, M. E., Gomes, J. E., Lopes, J. R. S. and Tsai, S. M. 2003. Detection and Diversity Assessment of Xylella fastidiosa in Field-Collected Plant and Insect Samples by Using 16S rRNA and gyrB Sequences. Appl. Environ. Microbiol. 69:4249-4255. https://doi.org/10.1128/AEM.69.7.4249-4255.2003
  30. Saitou, N. and Nei, M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molec. Biol. Evol. 4:406-425.
  31. Saponari, M., Boscia, D., Nigro, F. and Martelli, G. P. 2013. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). Disease Note. J. Plant Pathol. 94(3): 688.
  32. Schaad, N. W., Opgenorth, D. and Gaush, P. 2002. Real-time polymerase chain reaction for one-hour on-site diagnosis of grape early season asymptomatic vines. Phytopathology 92:721-728. https://doi.org/10.1094/PHYTO.2002.92.7.721
  33. Schaad, N. W., Postnikova, E., Lacy, G., Fatmi, M. and Chang, C. J. 2004. Xylella fastidiosa subspecies: X. fastidiosa subsp. fastidiosa subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Syst. Appl. Microbiol. 27:290-300. https://doi.org/10.1078/0723-2020-00263
  34. Schuenzel, E. L., Scally, M., Stouthamer, R. and Nunney, L. 2005. A multigene phylogenetic study of clonal diversity and divergence in North American strains of the plant pathogen Xylella fastidiosa. Appl. Environ. Microbiol. 71:3832-3839. https://doi.org/10.1128/AEM.71.7.3832-3839.2005
  35. Simpson, A. J. G., Reinach, F. C. and Arruda, P. et al. 2000. The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406:151-157. https://doi.org/10.1038/35018003
  36. Tamura, K., Nei, M. and Kumar, S. 2004. Prospects for inferring very large phylogenies by using the neighbour-joining method. Proc. Nat. Acad. Sci. USA 101:11030-11035. https://doi.org/10.1073/pnas.0404206101
  37. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0 Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  38. Yamamoto, S. and Harayama, S., 1995. PCR amplification and Direct Sequencing of gyrB genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomoans putida Strains. Appl. Environ. Microbiol. 61:1104-1109.
  39. Yamamoto, S. and Harayama, S. 1996. Phylogenetic analysis of Acinetobacter strains based on nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int. J. Syst. Bact. 46:506-511. https://doi.org/10.1099/00207713-46-2-506
  40. Yamamoto, S., Bouvet, P. J. and Harayama, S. 1999. Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization. Int. J. Syst. Bact. 49:87-95. https://doi.org/10.1099/00207713-49-1-87
  41. Wells, J. M., Raju, B. C., Hung, H. Y., Weisburg, W. G., Mandelco-Paul, L. and Brenner, D. J. 1987. Xylella fastidiosa gen. nov., sp. nov.: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int. J. Syst. Biol. 37:136-143.
  42. Wong, F., Cooksey, D. A. and Costa, H. S. 2004. Documentation and characterization of Xylella fastidiosa strains in landscape hosts. CDFA Pierce's Diseases Control Program Progress Report. Proceedings Pierce's Diseases Research Symposium, December 5-7, San Diego, CA, USA.

Cited by

  1. Sustainable Management of Plant Quarantine Pests: The Case of Olive Quick Decline Syndrome vol.9, pp.4, 2017, https://doi.org/10.3390/su9040659
  2. Xylella fastidiosa: Host Range and Advance in Molecular Identification Techniques vol.8, 2017, https://doi.org/10.3389/fpls.2017.00944
  3. Vessel occlusion in three cultivars of Olea europaea naturally exposed to Xylella fastidiosa in open field vol.165, pp.9, 2017, https://doi.org/10.1111/jph.12596
  4. Host Specificity of Pecan Strains of Xylella fastidiosa subsp. multiplex vol.101, pp.5, 2017, https://doi.org/10.1094/PDIS-07-16-1005-RE
  5. Systemically and Induce Anthocyanin Accumulation in Infected Leaves vol.109, pp.2, 2019, https://doi.org/10.1094/PHYTO-05-18-0155-FI
  6. Associated with Olive Quick Syndrome Symptoms in Southeastern Brazil vol.109, pp.2, 2019, https://doi.org/10.1094/PHYTO-07-18-0273-FI