
KYUNGPOOK Math. J. 56(2016), 301-310

http://dx.doi.org/10.5666/KMJ.2016.56.1.301

pISSN 1225-6951 eISSN 0454-8124

c© Kyungpook Mathematical Journal

On Paraopen Sets and Maps in Topological Spaces

Basavaraj M. Ittanagi∗

Department of Mathematics, Siddaganga Institute of Technology, Tumkur-572 103,
Karnataka State, India
e-mail : dr.basavarajsit@gmail.com

Shivanagappa S. Benchalli
Department of Mathematics, Karnatak University, Dharwad-580003 Karnataka
State, India
e-mail : benchalliss@gmail.com

Abstract. In this paper, we introduce and study the concept of a new class of sets called

paraopen sets and paraclosed sets in topological spaces. During this process some of their

properties are obtained. Also we introduce and investigate a new class of maps called

paracontinuous, ∗-paracontinuous, parairresolute, minimal paracontinuous and maximal

paracontinuous maps and study their basic properties in topological spaces.

1. Introduction

In the years 2001 and 2003, F. Nakaoka and N. Oda ([2], [3] and [4]) introduced
and studied minimal open (resp. minimal closed) sets and maximal open (resp.
maximal closed) sets, which are subclasses of open (resp. closed) sets. The com-
plements of minimal open sets and maximal open sets are called maximal closed
sets and minimal closed sets respectively. Also in the year 2011, S. S. Benchalli,
Basavaraj M. Ittanagi, R. S. Wali [1], introduced and studied minimal open sets
and maps in topological spaces.

Definition 1.1.([2]) A proper nonempty open subset U of a topological space X is
said to be a minimal open set if any open set which is contained in U is φ or U.

Definition 1.2.([3]) A proper nonempty open subset U of a topological space X is
said to be maximal open set if any open set which contains U is X or U.
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Definition 1.3.([4]) A proper nonempty closed subset F of a topological space X
is said to be a minimal closed set if any closed set which is contained in F is φ or F.

Definition 1.4.([4]) A proper nonempty closed subset F of a topological space X
is said to be maximal closed set if any closed set which contains F is X or F.

Definition 1.5.([1]) Let X and Y be the topological spaces. A map f : X → Y is
called
i) minimal continuous if f−1(M) is an open set in X for every minimal open set

M in Y.
ii) maximal continuous if f−1(M) is an open set in X for every maximal open

set M in Y.

The family of all minimal open (resp. minimal closed) sets in a topological
space X is denoted by MiO(X) (resp. MiC(X)). The family of all maximal open
(resp. maximal closed) sets in a topological space X is denoted by MaO(X) (resp.
MaC(X)).

2. Paraopen Sets and Some of Their Properties

Definition 2.1. Any open subset U of a topological space X is said to be a paraopen
set if it is neither minimal open nor maximal open set. The family of all paraopen
sets in a topological space X is denoted by PaO(X).

Any closed subset F of a topological space X is said to be a paraclosed set if
and only if its complement (X − F ) is paraopen set. The family of all paraclosed
sets in a topological space X is denoted by PaC(X).

Note that every paraopen set is an open set and every paraclosed set is a closed
set but not conversely, which is shown by the following example.

Example 2.2. Let X = {a, b, c, d} be with τ = {φ, {a}, {b}, {c}, {a, b}, {a, c},
{b, c}, {a, b, c}, X}. Then MiO(X) = {{a}, {b}, {c}}, MaO(X) = {a, b, c},
MiC(X) = {d}, MaC(X) = {{b, c, d}, {a, c, d}, {a, b, d}},
PaO(X) = {φ, {a, b}, {a, c}, {b, c}, X}, PaC(X) = {X, {c, d}, {b, d}, {a, d}, φ}.

Here {a} is an open set but not a paraopen set and {d} is a closed set but not
a paraclosed set.

Remark 2.3. Union and intersection of paraopen (resp. paraclosed) sets need not
be a paraopen (resp. paraclosed) set.

Example 2.4. In Example 2.2, we have {a, b}, {a, c} are paraopen sets but {a, b}∪
{a, c} = {a, b, c} and {a, b} ∩ {a, c} = {a} which are not paraopen sets. (resp.
{c, d}, {b, d} are paraclosed sets but {c, d}∪{b, d} = {b, c, d} and {c, d}∩{b, d} = {d}
which are not paraclosed sets).

Theorem 2.5. Let X be a topological space and U be a nonempty paraopen subset
of X. Then there exists a minimal open set N such that N ⊂ U .

Proof. By definition of minimal open set, it is obvious that N ⊂ U . 2
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Theorem 2.6. Let X be a topological space and U be a proper paraopen subset of
X then there exists a maximal open set M such that U ⊂ M .

Proof. By definition of maximal open set, it is obvious that U ⊂ M . 2

Theorem 2.7. Let X be a topological space.
i) Let U be a paraopen and N be a minimal open set then U ∩N = φ or N ⊂ U .
ii) Let U be a paraopen and M be a maximal open set then U ∪M = X or U ⊂ M .
iii) Intersection of paraopen sets is either paraopen or minimal open set.

Proof. i) Let U be a paraopen and N be a minimal open set in X. Then U ∩N = φ
or U ∩N 6= φ. If U ∩N = φ then there is nothing to prove. Suppose U ∩N 6= φ.
Now we have U ∩N is an open set and U ∩N ⊂ N . Hence N ⊂ U .
ii) Let U be a paraopen and M be a maximal open set in X. Then U ∪M = X or
U ∪M 6= X. If U ∪M = X then there is nothing to prove. Suppose U ∪M 6= X.
Now we have U ∪M is an open set and M ⊂ U ∪M . Since M is maximal open set,
U ∪M = M which implies U ⊂ M .
iii) Let U and V be paraopen sets in X. If U ∩ V is a paraopen set then there is
nothing to prove. Suppose U ∩ V is not a paraopen set. Then by definition, U ∩ V
is a minimal open or maximal open set. If U ∩ V is a minimal open set then there
is nothing to prove. Suppose U ∩ V is a maximal open set. Now U ∩ V ⊂ U and
U ∩ V ⊂ V which contradicts the fact that U and V are paraopen sets. Therefore
U ∩ V is not a maximal open set. That is U ∩ V must be a minimal open set. 2

Theorem 2.8. Let X be a topological space. A subset F of X is paraclosed if and
only if it is neither maximal closed nor minimal closed set.

Proof. The proof follows from the definition and fact that the complement of min-
imal open set is maximal closed set and the complement of maximal open set is
minimal closed set. 2

Theorem 2.9. Let X be a topological space and F be a nonempty paraclosed subset
of X then there exists a minimal closed set N such that N ⊂ F .

Proof. By definition of minimal closed set, it is obvious that N ⊂ F . 2

Theorem 2.10. Let X be a topological space and F be a proper paraclosed subset
of X then there exists a maximal closed set M such that F ⊂ M .

Proof. By definition of maximal closed set, it is obvious that F ⊂ M . 2

Theorem 2.11. Let X be a topological space.
i) Let F be paraclosed and N be a minimal closed sets then F ∩N = φ or N ⊂ F .
ii) Let F be paraclosed and M be a maximal closed sets then F ∪M = X or F ⊂ M .
iii) Intersection of paraclosed sets is either paraclosed or minimal closed set.

Proof. i) Let F be a paraclosed and N be a minimal closed sets in X. Then (X −F )
is paraopen and (X −N) is maximal open sets in X. Then by Theorem 2.7(ii) we
have (X−F )∪(X−N) = X or (X−F ) ⊂ (X−N) which implies X−(F ∩N) = X
or N ⊂ F . Therefore F ∩N = φ or N ⊂ F .
ii) Let F be a paraclosed and M be a maximal closed sets in X. Then (X − F ) is
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paraopen and (X−M) is minimal open sets in X. Then by Theorem 2.7(i) we have
(X − F ) ∩ (X −M) = φ or (X −M) ⊂ (X − F ) which implies X − (F ∪M) = φ
or F ⊂ M . Therefore F ∪M = X or F ⊂ M .
iii) Let U and V be paraclosed sets in X. If U ∩ V is a paraclosed set then there
is nothing to prove. Suppose U ∩ V is not a paraclosed set. Then by definition,
U ∩ V is a minimal closed or maximal closed set. If U ∩ V is a minimal closed
set then there is nothing to prove. Suppose U ∩ V is a maximal closed set. Now
U ⊂ U ∩ V and V ⊂ U ∩ V which contradicts the fact that U and V are paraclosed
sets. Therefore U ∩V is not a maximal closed set. That is U ∩V must be a minimal
closed set. 2

3. Paracontinuous Maps and Some of Their Properties

Definition 3.1. Let X and Y be topological spaces. A map f : X → Y is called
i) paracontinuous (briefly pa-continuous) if f−1(U) is an open set in X for every

paraopen set U in Y.
ii) ∗-paracontinuous (briefly ∗-pa-continuous) if f−1(U) is paraopen set in X for

every open set U in Y.
iii) parairresolute (briefly pa-irresolute) if f−1(U) is paraopen set in X for every

paraopen set U in Y.
iv) minimal paracontinuous (briefly min-pa-continuous) if f−1(M) is paraopen

set in X for every minimal open set M in Y.
v) maximal paracontinuous (briefly max-pa-continuous) if f−1(M) is paraopen

set in X for every maximal open set M in Y.

Theorem 3.2. Every continuous map is paracontinuous but not conversely.

Proof. Let f : X → Y be a continuous map. To prove f is paracontinuous. Let U be
any paraopen set in Y. Since every paraopen set is an open set, U is an open set in
Y. Since f is continuous, f−1(U) is an open set in X. Hence f is a paracontinuous.2

Example 3.3. Let X = Y = {a, b, c, d} be with τ = {φ, {a}, {a, b}, {a, b, c}, X}
and µ = {φ, {a}, {b}, {a, b}, {a, b, c}, Y }. Let f : X → Y be an identity map. Then
f is paracontinuous but it is not a continuous map, since for the open set {b} in Y,
f−1({b}) = {b} which is not an open set in X.

Theorem 3.4. Every ∗-paracontinuous map is continuous map but not conversely.

Proof. Let f : X → Y be a ∗-paracontinuous map. To prove f is continuous map.
Let U be an open set in Y. Since f is ∗-paracontinuous, f−1(U) is a paraopen set
in X. Since every paraopen set is an open set, f−1(U) is an open set in Y. Hence f
is a continuous map. 2

Example 3.5. Let X = Y = {a, b, c, d} be with τ = {φ, {a}, {a, b}, {a, b, c}, X}
and µ = {φ, {a}, {a, b}, {a, b, c}, Y }. Let f : X → Y be an identity map. Then f is
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a continuous map but it is not a ∗-paracontinuous map, since for the open set {a}
in Y, f−1({a}) = {a} which is not a paraopen set in X.

Theorem 3.6. Every ∗-paracontinuous map is paracontinuous map but not con-
versely.

Proof. The proof follows from the Theorems 3.2 and 3.4. 2

Example 3.7. In Example 3.5, f is a paracontinuous map but it is not a ∗-
paracontinuous map.

Theorem 3.8. Every parairresolute map is paracontinuous map but not conversely.

Proof. Let f : X → Y be a parairresolute map. To prove f is paracontinuous map.
Let U be any paraopen set in Y. Since f is parairresolute, f−1(U) is a paraopen set
in X. Since every paraopen set is an open set, f−1(U) is an open set in X. Hence f
is a paracontinuous map. 2

Example 3.9. Let X = Y = {a, b, c, d} be with τ = {φ, {a, b}, {a, b, c}, X} and
µ = {φ, {a}, {a, b}, {a, b, c}, Y }. Let f : X → Y be an identity map. Then f is a
paracontinuous map but it is not a parairresolute map, since for the paraopen set
{a, b} in Y, f−1({a, b}) = {a, b} which is not a paraopen set in X.

Theorem 3.10. Every ∗-paracontinuous map is parairresolute map but not con-
versely.

Proof. Let f : X → Y be a ∗-paracontinuous map. To prove f is parairresolute
map. Let U be any paraopen set in Y. Since every paraopen set is an open set, U
is an open set in Y. Since f is ∗-paracontinuous, f−1(U) is a paraopen set in X.
Hence f is a parairresolute map. 2

Example 3.11. In Example 3.5, f is a parairresolute map but it is not a
∗-paracontinuous map.

Remark 3.12. Parairresolute and continuous maps are independent of each other.

Example 3.13. Let X = Y = {a, b, c, d} be with τ = {φ, {a}, {a, c}, {a, b, c}, X}
and µ = {φ, {a}, {a, b}, {a, b, c}, Y }. Let f : X → Y be a map defined by f(a) =
a, f(b) = a, f(c) = c and f(d) = d. Then f is a continuous map but it is not a
parairresolute map, since for the paraopen set {a, b} in Y, f−1({a, b}) = {a} which
is not a paraopen set in X. In Example 3.3, f is a parairresolute map but it is not
continuous map.

Theorem 3.14. Every minimal paracontinuous map is minimal continuous but not
conversely.

Proof. Let f : X → Y be a minimal paracontinuous map. To prove f is minimal
continuous. Let N be any minimal open set in Y. Since f is minimal paracontinuous,
f−1(N) is a paraopen set in X. Since every paraopen set is an open set, f−1(N) is
an open set in X. Hence f is a minimal continuous. 2
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Example 3.15. In Example 3.5, f is a minimal continuous but it is not a minimal
paracontinuous, since for the minimal open set {a} in Y, f−1({a}) = {a} which is
not a paraopen set in X.

Remark 3.16. Minimal paracontinuous and paracontinuous (resp. continuous)
maps are independent of each other.

Example 3.17. Let X = Y = {a, b, c, d, e} be with τ = {φ, {a}, {a, b}, {a, b, c},
X}, and µ = {φ, {a, b}, {a, b, d}, {a, b, c, d}, Y }. Let f : X → Y be an identity
map. Then f is a minimal paracontinuous but it is not a paracontinuous (resp.
continuous), since for the paraopen (resp. open) set {a, b, d} in Y, f−1({a, b, d}) =
{a, b, d} which is not an open set in X. In Example 3.5, f is a paracontinuous (resp.
continuous) but it is not minimal paracontinuous.

Theorem 3.18. Every maximal paracontinuous map is maximal continuous but
not conversely.

Proof. Let f : X → Y be a maximal paracontinuous map. To prove f is maximal
continuous. Let M be any maximal open set in Y. Since f is maximal paracon-
tinuous, f−1(M) is a paraopen set in X. Since every paraopen set is an open set,
f−1(M) is an open set in X. Hence f is a maximal continuous.

Example 3.19. In Example 3.5, f is a maximal continuous but it is not maxi-
mal paracontinuous, since for the maximal open set {a, b, c} in Y, f−1({a, b, c}) =
{a, b, c} which is not a paraopen set in X.

Remark 3.20. Maximal paracontinuous and paracontinuous (resp. continuous)
maps are independent of each other.

Example 3.21. Let X = Y = {a, b, c, d, e} be with τ = {φ, {a, b}, {a, b, c},
{a, b, c, d}, X}, and µ = {φ, {a}, {a, c}, {a, b, c}, Y }. Let f : X → Y be an identity
map. Then f is a maximal paracontinuous map but it is not a paracontinuous (resp.
continuous), since for the paraopen (resp. open) set {a, c} in Y, f−1({a, c}) =
{a, c} which is not an open set in X. In Example 3.5, f is a paracontinuous (resp.
continuous) but it is not a maximal paracontinuous.

Remark 3.22. Minimal paracontinuous and Maximal paracontinuous maps are
independent of each other.

Example 3.23. In Example 3.17, f is a minimal paracontinuous but it is not a
maximal paracontinuous. In Example 3.21, f is a maximal paracontinuous but it
is not a minimal paracontinuous.

Theorem 3.24. Let X and Y be topological spaces. A map f : X → Y is a para-
continuous if and only if the inverse image of each paraclosed set in Y is a closed
set in X.

Proof. The proof follows from the definition and fact that the complement of
paraopen set is paraclosed set. 2
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Theorem 3.25. Let X and Y be topological spaces and A be a nonempty subset
of X. If f : X → Y is paracontinuous then the restriction map fA : A → Y is a
paracontinuous.

Proof. Let f : X → Y be a paracontinuous map and A ⊂ X. To prove fA is a
paracontinuous. Let U be a paraopen set in Y. Since f is paracontinuous, f−1(U) is
an open set in X. By definition of relative topology f−1

A (U) = A∩f−1(U). Therefore
A ∩ f−1(U) is an open set in A. Hence fA is a paracontinuous. 2

Remark 3.26. The composition of paracontinuous maps need not be paracontin-
uous.

Example 3.27. Let X = Y = Z = {a, b, c, d, e} be with τ = {φ, {a, b, c}, X},
µ = {φ, {a, b}, {a, b, c}, {a, b, c, d}, Y } and η = {φ, {a}, {a, b}, {a, b, c}, Z}. Let f :
X → Y and g : Y → Z are identity maps. Then f and g are paracontinuous maps
but g o f : X → Z is not a paracontinuous, since for the paraopen set {a, b} in Z,
(g o f)−1({a, b}) = {a, b} which is not an open set in X.

Theorem 3.28. If f : X → Y is continuous and g : Y → Z is paracontinuous
maps. Then g o f : X → Z is a paracontinuous.

Proof. Let U be any paraopen set in Z. Since g is paracontinuous, g−1(U) is an
open set in Y. Again since f is continuous, f−1(g−1(U)) = (g o f)−1(U) is an open
set in X. Hence g o f is a paracontinuous. 2

Theorem 3.29. Let X and Y be topological spaces. A map f : X → Y is a
∗-paracontinuous if and only if the inverse image of each closed set in Y is a para-
closed set in X.

Proof. The proof follows from the definition and fact that the complement of
paraopen set is paraclosed set. 2

Remark 3.30. Let X and Y be topological spaces. If f : X → Y is ∗-
paracontinuous then fA : A → Y is need not be a ∗-paracontinuous.

Example 3.31. Let X = Y = {a, b, c, d} be with τ = {φ, {a}, {a, b}, {a, b, c}, X}
and µ = {φ, {a, b}, Y }. Let A = {a, c, d} be with τA = {φ, {a}, {a, c}, A}. Let
f : X → Y be an identity map. Then f is a ∗-paracontinuous map but fA : A → Y is
not a ∗-paracontinuous, since for the open set {a, b} in Y, f−1

A ({a, b}) = A∩{a, b} =
{a} which is not a paraopen set in A.

Theorem 3.32. If f : X → Y and g : Y → Z are ∗-paracontinuous maps. Then
g o f : X → Z is a ∗-paracontinuous.

Proof. Let U be an open set in Z. Since g is ∗-paracontinuous, g−1(U) is a paraopen
set in Y. Since every paraopen set is an open, g−1(U) is an open set in Y. Again
since f is ∗-paracontinuous, f−1(g−1(U)) = (g o f)−1(U) is a paraopen set in X.
Hence g o f is a ∗-paracontinuous. 2

Theorem 3.33. If f : X → Y is paracontinuous and g : Y → Z is ∗-paracontinuous
maps. Then g o f : X → Z is a paracontinuous (resp. continuous) map.
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Proof. Let U be any paraopen (resp. open) set in Z. Since every paraopen set is an
open set, U is an open set in Z. Since g is ∗-paracontinuous, g−1(U) is a paraopen
set in Y. Again since f is paracontinuous, f−1(g−1(U)) = (g o f)−1(U) is an open
set in X. Hence g o f is a paracontinuous (resp. continuous) map. 2

Theorem 3.34. Let X and Y be topological spaces. A map f : X → Y is a parair-
resolute if and only if the inverse image of each paraclosed set in Y is paraclosed
set in X.

Proof. The proof follows from the definition and fact that the complement of
paraopen set is paraclosed set. 2

Remark 3.35. Let X and Y be topological spaces. If f : X → Y is a parairresolute
then fA : A → Y is need not be a parairresolute.

Example 3.36. In Example 3.5, let A = {a, c, d} be with τA = {φ, {a}, {a, c}, A}.
Let f : X → Y be an identity map. Then f is a parairresolute map but fA : A → Y
is not a parairresolute, since for the paraopen set {a, b} in Y, f−1

A ({a, b}) = A ∩
{a, b} = {a} which is not a paraopen set in A.

Theorem 3.37. If f : X → Y is paracontinuous and g : Y → Z is parairresolute
maps. Then g o f : X → Z is a paracontinuous map.

Proof. Let U be any paraopen set in Z. Since g is parairresolute, g−1(U) is a
paraopen set in Y. Again since f is paracontinuous, f−1(g−1(U)) = (g o f)−1(U)
is an open set in X. Hence g o f is a paracontinuous map. 2

Theorem 3.38. If f : X → Y and g : Y → Z are parairresolute maps. Then
g o f : X → Z is a parairresolute map.

Proof. Let U be any paraopen set in Z. Since g is parairresolute, g−1(U) is a
paraopen set in Y. Again since f is parairresolute, f−1(g−1(U)) = (g o f)−1(U) is
a paraopen set in X. Hence g o f is a parairresolute map. 2

Theorem 3.39. If f : X → Y is ∗-paracontinuous and g : Y → Z is parairresolute
maps. Then g o f : X → Z is a parairresolute map.

Proof. Let U be any paraopen set in Z. Since g is parairresolute, g−1(U) is a
paraopen set in Y. Since every paraopen set is an open, we have g−1(U) is an
open set in Y. Again since f is ∗-paracontinuous, f−1(g−1(U)) = (g o f)−1(U) is a
paraopen set in X. Hence g o f is a parairresolute map. 2

Theorem 3.40. If f : X → Y is parairresolute and g : Y → Z is ∗-paracontinuous
maps. Then g o f : X → Z is a parairresolute map.

Proof. Let U be any paraopen set in Z. Since every paraopen set is an open set,
U is an open set in Z. Since g is ∗-paracontinuous, g−1(U) is a paraopen set in Y.
Again since f is parairresolute, f−1(g−1(U)) = (g o f)−1(U) is a paraopen set in
X. Hence g o f is a parairresolute map. 2

Theorem 3.41. Let X and Y be topological spaces. A map f : X → Y is a minimal
paracontinuous if and only if the inverse image of each maximal closed set in Y is
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a paraclosed set in X.

Proof. The proof follows from the definition and fact that the complement of mini-
mal open set is maximal closed set and the complement of paraopen set is paraclosed
set.

Remark 3.42. The composition of minimal paracontinuous maps need not be a
minimal paracontinuous.

Example 3.43. Let X = Y = Z = {a, b, c, d, e} be with τ = {φ, {a}, {a, b},
{a, b, c}, X}, µ = {φ, {a, b}, {a, b, c}, {a, b, c, d}, Y } and η = {φ, {a, b, c},
{a, b, c, d}, Z}. Let f : X → Y and g : Y → Z be identity maps. Then f and g are
minimal paracontinuous maps but g o f : X → Z is not a minimal paracontinuous,
since for the minimal open set {a, b, c} in Z, (g o f)−1({a, b, c}) = {a, b, c} which is
not a paraopen set in X.

Theorem 3.44. If f : X → Y is parairresolute and g : Y → Z is minimal
paracontinuous maps, then g o f : X → Z is a minimal paracontinuous.

Proof. Let N be any minimal open set in Z. Since g is minimal paracontinuous,
g−1(N) is a paraopen set in Y. Again since f is parairresolute, f−1(g−1(N)) =
(g o f)−1(N) is a paraopen set in X. Hence g o f is a minimal paracontinuous. 2

Theorem 3.45. If f : X → Y is paracontinuous and g : Y → Z is minimal
paracontinuous maps, then g o f : X → Z is a minimal continuous.

Proof. Let N be any minimal open set in Z. Since g is minimal paracontinuous,
g−1(N) is a paraopen set in Y. Again since f is paracontinuous, f−1(g−1(N)) =
(g o f)−1(N) is an open set in X. Hence g o f is a minimal paracontinuous. 2

Theorem 3.46. If f : X → Y is parairresolute and g : Y → Z is ∗-paracontinuous
maps, then g o f : X → Z is a minimal paracontinuous.

Proof. Let N be any minimal open set in Z. Since every minimal open set is an open
set, N is an open set in Z. Since g is ∗-paracontinuous, g−1(N) is a paraopen set in
Y. Again since f is parairresolute, f−1(g−1(N)) = (g o f)−1(N) is a paraopen set
in X. Hence g o f is a minimal paracontinuous. 2

Theorem 3.47. Let X and Y be topological spaces. A map f : X → Y is a maximal
paracontinuous if and only if the inverse image of each minimal closed set in Y is
paraclosed set in X.

Proof. The proof follows from the definition and fact that the complement of maxi-
mal open set is minimal closed set and the complement of paraopen set is paraclosed
set. 2

Remark 3.48. The composition of maximal paracontinuous maps need not be a
maximal paracontinuous.

Example 3.49. Let X = Y = {a, b, c, d, e} be with τ = {φ, {a, c}, {a, b, c},
{a, b, c, d}, X}, µ = {φ, {a}, {a, b}, {a, b, c}, Y } and η = {φ, {a}, {a, b}, Z}. Let
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f : X → Y and g : Y → Z are identity maps. Then f and g are maximal
paracontinuous maps but g o f : X → Z is not maximal paracontinuous, since for
the maximal open set {a, b} in Z, (g o f)−1({a, b}) = {a, b} which is not a paraopen
set in X.

Theorem 3.50. If f : X → Y is parairresolute and g : Y → Z is maximal
paracontinuous maps. Then g o f : X → Z is a maximal paracontinuous.

Proof. Let M be any maximal open set in Z. Since g is maximal paracontinuous,
g−1(M) is a paraopen set in Y. Again since f is parairresolute, f−1(g−1(M)) =
(g o f)−1(M) is a paraopen set in X. Hence g o f is a maximal paracontinuous. 2

Theorem 3.51. If f : X → Y is paracontinuous and g : Y → Z is maximal
paracontinuous maps, then g o f : X → Z is a maximal continuous.

Proof. Let M be any maximal open set in Z. Since g is maximal paracontinuous,
g−1(M) is a paraopen set in Y. Again since f is paracontinuous, f−1(g−1(M)) =
(g o f)−1(M) is an open set in X. Hence g o f is a maximal continuous. 2

Theorem 3.52. If f : X → Y is parairresolute and g : Y → Z is ∗-paracontinuous
maps, then g : X → Z is a maximal paracontinuous.
Proof. Let M be any maximal open set in Z. Since every maximal open set is an open
set, M is an open set in Z. Since g is ∗-paracontinuous, g−1(M) is a paraopen set
in Y. Again since f is parairresolute, f−1(g−1(M)) = (g o f)−1(M) is a paraopen
set in X. Hence g o f is a maximal paracontinuous. 2
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