
KYUNGPOOK Math. J. 56(2016), 257-271

http://dx.doi.org/10.5666/KMJ.2016.56.1.257

pISSN 1225-6951 eISSN 0454-8124

c© Kyungpook Mathematical Journal

Invariant Trace Fields of Chain Links

Kazuhiro Ryou
Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Ookayama,
Meguro-ku, Tokyo 152-8551, Japan
e-mail : ryou.k.aa@m.titech.ac.jp

Abstract. In this paper, we compute the trace field of C(2, s), the complement of two

component chain link with s left half twists in S3, for every s. As a result, for every

n ∈ N \ {1}, we can find s ∈ Z such that the degree of the trace field of C(2, s) is n. We

also prove that if for fixed p, the degree of the trace field of C(p, s) runs over N \ {1}, then

p is contained in {1, 2, 4, 8}.

1. Introduction

Let L be a link. If S3 \ L admits a complete hyperbolic structure of finite
volume, then there is a torsion-free Kleinian group Γ such that S3 \L is homeomor-
phic to H3/Γ, where H3 is the hyperbolic 3-space. By the Mostow-Prasad Rigidity
Theorem, if S3 \ L is homeomorphic to H3/Γ1 and H3/Γ2, then Γ1 is conjugate
to Γ2. Hence the extension field Q({trγ : γ ∈ Γ}), called the trace field of Γ, is
a topological invariant, since trace is invariant under conjugation. While we know
many features of trace fields, there are a few infinite families of links such that we
can compute the trace fields.

Let C(p, s) be the complement of a p chain link with s left half twists in S3

pictured in Figure 1. In [4], Neumann and Reid proved that C(p, s) has a complete
hyperbolic structure of finite volume if and only if {|p+s|, |s|} 6⊂ {0, 1, 2}. Moreover,
they computed the trace fields of C(p, s) for |p + s|, |s| ≤ 13. Based on their work,
Hoste and Shanahan computed the trace fields of C(1, s) in [1]. One of the purpose
of this paper is to compute the trace fields of C(2, s).
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Figure 1: C(p, s) for p = 4, s = 5

To state the main theorem, define ψs(x) to be




(x
s
2+1 − x−( s

2+1)) + (x
s
2 + x−

s
2 ) ( s

2 : even)
(x

s
2+1 + x−( s

2+1)) + (x
s
2 − x−

s
2 ) ( s

2 : odd)

(xs+1 + x−(s+1)) + 2
∑ s−1

2
j=0 (−1)j(xs−2j − x−(s−2j)) (s: odd).

Since x2j−1 − x−(2j−1) and x2j + x−2j can be written in z = x− x−1, ψs(x) can be
written as a polynomial in z = x− x−1, which we denote by Ψs(z). The following
theorem is the first main result in this paper.

Theorem 1.1.

1. Ψs(z) is irreducible.

2. For s ∈ Z \ {−2,−1, 0}, the trace field of C(2, s) is Q(w), where w is a root
of Ψs(z) for s > 0, or Ψ−(2+s)(z) for s < −2.

Remark 1.2. The explicit form of Ψs(z) is in the Appendix.

According to the computation done by Hoste and Shanahan, the degree of the
trace field of C(1, s) runs over all elements of N \ {1} as s runs over all elements of
Z. By Theorem , we have:

Corollary 1.3. The degree of the trace field of C(2, s) runs over all elements of
N \ {1} as s runs over all elements of Z.

T. Chinburg proved that the trace fields of C(p, s) have degree 2 if and only if
(|p+ s|, |s|) or (|s|, |p+ s|) is in {(3, 0), (3, 1), (3, 2), (3, 3), (4, 0), (4, 2), (4, 4), (6, 0),
(6, 6)} (the proof can be found in [4]). Hence if for fixed p ∈ N the degree of the
trace field of C(p, s) runs over all elements of N \ {1} as s runs over all elements of
Z, then p is contained in the set {1, 2, 3, 4, 5, 6, 8, 12}. The following theorem is the
second main result.

Theorem 1.4. If for fixed p ∈ Z the degree of the trace field of C(p, s) runs over
all elements of N \ {1} as s runs over all elements of Z, then p is contained in the
set {1, 2, 4, 8}.
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This paper proceeds as follows. In section 2, we briefly recall some basic results
on Kleinian groups and trace fields. Moreover, we recall the work done by Neumann
and Reid. In section 3, we extend the theorem proved by Hoste and Shanahan, and
prove the main results.

2. Preliminaries

In this section, we recall the results obtained by Neumann and Reid, which
enable us to compute the invariant trace field of C(p, s) for fixed p, s. Expositions
mainly follow that of [4]. Texts for basic results on Kleinian groups and invariant
trace fields are [3] and [2].

2.1 Kleinian groups
The group PSL(2,C) is the quotient of the group SL(2,C) of all 2× 2 matrices

with complex entries and determinant 1 by its center {±I}. PSL(2,C) acts on
Ĉ = C∪{∞} by Möbius transformations. By the Poincaré extension, every Möbius
transformation extends to an orientation-preserving isometry on the upper half 3-
space H3 equipped with the hyperbolic metric (cf.[3]). Moreover, every orientation-
preserving isometry of H3 is obtained by the Poincaré extension of some Möbius
transformation. Hence PSL(2,C) can be identified with the group of orientation-
preserving isometries of H3.

Remark 2.1. PSL(2,C) can be identified with PGL(2,C).

Definition 2.2. A discrete subgroup Γ of PSL(2,C) is called a Kleinian group.

Remark 2.3. This condition is equivalent to requiring that Γ acts properly dis-
continuously on H3.

If Γ is torsion-free, then H3/Γ is an orientable hyperbolic 3-manifold. If Γ is a
conjugate of Γ′ in PSL(2,C), then H3/Γ and H3/Γ′ are isometric. Conversely every
orientable hyperbolic 3-manifold M has the form H3/Γ, where Γ is a torsion-free
Kleinian group, uniquely determined by the orientation-preserving isometry class
of M up to conjugacy.

2.2 Invariant trace fields
Let Γ be a Kleinian group of finite covolume and P be the projection of SL(2,C)

onto PSL(2,C).

Definition 2.4. The smallest field containing Q and {trγ | γ ∈ P−1(Γ)} is called
the trace field of Γ and denoted by Q(trΓ).

Lemma 2.5.([2], Theorem 3.1.2) Q(trΓ) is a finite extension of Q.

Theorem 2.6.([2], Theorem 3.3.4) Let Γ(2) be the subgroup of Γ generated by the set
{γ2 | γ ∈ Γ}. Then the trace field Q(trΓ(2)) is an invariant of the commensurability
class of Γ.

Definition 2.7. Q(trΓ(2)) is called the invariant trace field of Γ.
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Figure 3: Whitehead link

Definition 2.8. For a hyperbolic 3-manifold M = H3/Γ, Q(trΓ) and Q(trΓ(2))
are called the trace field of M and the invariant trace field of M , respectively. We
denote the invariant trace field of M by kM .

Remark 2.9. The trace field and the invariant trace field of M is well-defined since
trace is invariant under conjugation.

For the complement of a link in S3, the trace field coincides with the invariant
trace field by the following theorem.

Theorem 2.10.([2], Corollary 4.2.2) If M = H3/Γ is the complement of a link in
a Z2-homology sphere, then the trace field coincides with the invariant trace field.

2.3 Whitehead link
We denote the complement of the Whitehead link in S3 by W . W can be

obtained by identifying the faces of an ideal octahedron, gluing A to A′, B to B′

and so on, as shown in Figure 2. Now we consider the orbifold W (p, q) obtained
by performing (p, q) Dehn surgery of W at the toral end 1 in Figure 3 for p, q ∈ Z.
In this paper, we do not assume that p and q are coprime, so that W (p, q) can be
an orbifold. If the octahedron in Figure 2 is taken to be a regular ideal octahedron
in H3, then we obtain a complete hyperbolic structure on W . Hence for almost all
p, q ∈ Z, W (p, q) admits a complete hyperbolic structure.
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12

Figure 4: Orbifold W ′

Let (u1, v1) and (u2, v2) be analytic Dehn surgery parameters for the toral ends
1 and 2. Since we only perform Dehn surgery on the toral end 1, we have u2 = 0
and v2 = 0, by the requirement that the hyperbolic structure on the toral end 2 is
complete.

To represent (u1, v1) in terms of shape of octahedron, we consider a special ideal
octahedron in H3 with vertices at 0, 1, ∞, −1, x, and x−1 on ∂H3 = Ĉ. Denote
these vertices by a0, . . . , a5, respectively. Then

(
1 1

1− z 1

)
,

(
1 1
1 1 + z

)
,

(
1 1− z
1 1

)
,

(
1 + z 1

1 1

)
∈ PGL(2,C)

translate A to A′, B to B′, C to C ′, and D to D′, respectively, where z = x− x−1.
We denote these matrices by a, b, c, and d, respectively. W inherits a hyperbolic
structure for each x ∈ H, where H denotes the upper-half plane. A hyperbolic
structure on W depends on the choice of x ∈ H. However, it is known that the
hyperbolic structure on the toral end 2 is complete for each x.

In [4], Neumann and Reid obtained the following equations.

u1 = log x + log(x + 1)− log(x− 1)(2.1)
v1 = 4 log x− 2πi.(2.2)

Here log denotes the standard branch of natural log on the complex plane splitting
along (−∞, 0]. Let α be a solution of the equation pu1 + qv1 = 2πi of x. For α,
there exists a metric completion W of W such that W is orbifold homeomorphic to
W (p, q). By (2.2), we can determine the value of α.

e =
(

0 1
1 0

)
∈ PGL(2,C)

rotates W about the axis through a1 and a3. We denote the quotient space W/{e}
by W ′. Then W ′ inherits a structure as a hyperbolic orbifold for each x ∈ H.
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For the orbifold W ′, we can obtain

u′1 = log x + log(x + 1)− log(x− 1)(2.3)
v′1 = 2 log x− πi,(2.4)

where (u′1, v
′
1) is an analytic Dehn surgery parameter for the toral end 1 of W ′ in

the case that the hyperbolic structure on the toral end 2 is complete.
For each x ∈ H, the real Dehn surgery parameter (p1(x), q1(x)) takes their value

in R2 − N where N denotes the closed parallelogram in R2 with vertices ±(−4, 1),
±(0, 1). Hence W (p, q) has a hyperbolic structure for integer pair (p, q) ∈ R2 −N.
In this paper, we only consider the case W (p, q) for (p, q) ∈ Z2. The following
theorem allows us to compute the invariant trace field of W (p, q) and W ′(p, 2q).

Theorem 2.11.([Neumann-Reid[4], Theoem 6.2])

kW (p, q) = Q(α− α−1) (q ∈ Z)

kW ′(p, 2q) = Q(α− α−1) (q ∈ 1
2
Z).

2.4 Chain links
Let C(p, s) denote the complement of a p chain link in S3 with s left half twists.

C(p, 2q) is homeomorphic to the manifold obtained by performing (p, q) Dehn filling
at the toral end 1 of W , and then taking the p-fold cover of the resulting manifold
or orbifold. Hence, if W (p, q) admits a complete hyperbolic structure, then C(p, 2q)
admits a complete hyperbolic structure. Therefore, there exist Kleinian groups Γ
and Γ′ such that H3/Γ and H3/Γ′ are isometric to C(p, 2q) and W (p, q) respectively.
Since C(p, 2q) is a cover of W (p, q), Γ′ is conjugate to a finite index subgroup of Γ.
Hence we have kW (p, q) = kC(p, 2q).

To obtain C(p, s) for s odd, we use W ′. We obtain the orbifold W ′(p, s) by
performing (p, s) Dehn filling of the toral end of W ′. This orbifold is a quotient of
C(p, s). Neumann and Reid proved the following theorem in [4].

Theorem 2.12.([Neumann-Reid[2], Theorem 5.1])

1. C(p, s) has a hyperbolic structure if and only if {|p + s|, |s|} 6⊂ {0, 1, 2}.
2. C(p, s) and C(p′, s′) have same invariant trace field if (p′+s′, s′) = ±(p+s, s)

or (p′ + s′, s′) = ±(−s, p + s).

By this theorem, if we obtain the invariant trace fields of C(2, s) in the case s > 0,
then we can obtain the invariant trace fields of C(2, s) in the case s < −2. Hence we
compute the invariant trace field (which coincides with the trace field by Theorem
) of C(2, s) only in the case s > 0 in the next section.

3. Main Theorem

In this section, we compute the trace fields of C(2, s). To prove Ψs(z) is indeed
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irreducible, we need the lemma proved by Hoste and Shanahan. Hence we first
recall the lemma with the proof.

Definition 3.1. Let p(x) ∈ Z[x] be a polynomial with no repeated roots. p(x) is
called complete if p(α) = 0 implies p(−α−1) = 0.

The following lemma is a part of the lemma 3 in [1]. Since we need the proof
of the lemma to obtain Theorem , we recall it with the proof.

Lemma 3.2.([Hoste-Shanahan]) Let p(x) be a complete polynomial which has no
roots on the imaginary axis. If the leading and the next coefficients of p(x) are 1
and the norm of every root in the first quadrant is < 1, then p(x) does not factor
into two complete factors in Z[x].

Proof. Assume that there is a complete factor g(x) of p(x). If α is a root of g(x),
then −α−1, α, and −α−1 are also roots of g(x). Since the norm of every non-real
root α in the first quadrant is < 1, α + α − α−1 − α−1 is contained in R and < 0.
If a root α′ is real, then α′ − α′−1 < 0. Hence if g(x) has a form

g(x) = xn + bn−1x
n−1 + bn−2x

n−2 + · · ·+ b0,

then bn−1 = −∑
(αi + αi − α−1

i − α−1
i )−∑

(α′i − α′−1
i ) > 0, where αi are non-real

roots and α′i are real. Moreover, bn−1 < 1 since the sum of the all roots of p(x) is
−1. However, this is a contradiction to the fact that bn−1 is an integer. 2 Before

we prove the main theorems in this paper, we prove the following lemma.

Lemma 3.3. The polynomial f(x) = (x+1)pxp+4q−(x−1)p ∈ Z[x] has no repeated
roots

Proof. If f(x) has repeated roots, then f(x) and f ′(x) have a common root. From

f ′(x) = p(x + 1)p−1xp+4q + (p + 4q)(x + 1)pxp+4q−1 − p(x− 1)p−1,

we have

(x− 1)f ′(x)− pf(x) = (x + 1)p−1xp+4q−1{(p + 4q)x2 − 2px− (p + 4q)}.

Neither 0 nor −1 is a root of f(x). Thus, if f(x) has a repeated root, then the
repeated root is a root of the polynomial g(x) = (p + 4q)x2 − 2px− (p + 4q).

β 6= 1 is a root of f(x) if and only if β is a solution of

(3.1)
(

x(x + 1)
(x− 1)

)p

x4q = 1.

If β is a solution of (3.1) in the first quadrant, then
∣∣∣β+1
β−1

∣∣∣ ≥ 1. Thus if |β| > 1,

then
∣∣∣β(β+1)

(β−1) βs
∣∣∣ > 1. Hence |β| ≤ 1. However, the roots of g(x) are real and the

positive root of g(x) is > 1. Therefore f(x) has no repeated roots. 2
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First, we prove Theorem in the case s is even. In this case, we can apply
Lemma directly.

Theorem 3.4. If s ∈ Z is even, then the trace field of C(2, s) is Q(w), where w is
a root of the irreducible polynomial Ψs(z) in Theorem .

Proof. kC(2, s) is equal to kW (2, s
2 ), since C(2, s) is a cover of W (2, s

2 ). Hence we
compute kW (2, s

2 ). By Theorem , we have kW (2, s
2 ) = Q(α − α−1), where α is a

solution of the following equation

(3.2) 2 log
x(x + 1)
(x− 1)

+
s

2
(4 log x− 2πi) = 2πi.

Since s is even, α is a solution of
(

x(x + 1)
(x− 1)

)2

x2s = 1.

This equation can be factored as
(

x(x + 1)
(x− 1)

xs + 1
)(

x(x + 1)
(x− 1)

xs − 1
)

= 0.

If s
2 is even, then β satisfying

(3.3)
β(β + 1)
(β − 1)

βs − 1 = 0

is not a solution of the equation (3.2) since β is a solution of

log
x(x + 1)
(x− 1)

+
s

4
(4 log x− 2πi) = 2nπi

for some n ∈ Z. Hence α is a solution of

x(x + 1)
(x− 1)

xs + 1 = 0.

Therefore, α is a root of

(3.4) p(x) = xs+2 + xs+1 + x− 1 = 0.

If s
2 is odd, then α is a solution of

x(x + 1)
(x− 1)

xs − 1 = 0.

Therefore, α is a root of

(3.5) p(x) = xs+2 + xs+1 − x + 1 = 0.
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Every root of p(x) is a solution of
(

x(x + 1)
(x− 1)

)2

x2s = 1.

By Lemma , f(x) = (x + 1)2x2s+2 − (x− 1)2 has no repeated roots. Thus p(x) has
no repeated roots. Hence it is clear that p(x) is complete.

Now we prove the polynomials (3.4) and (3.5) satisfy the conditions in Lemma
. Let β be a root of the polynomial (3.4) or (3.5) in the first quadrant not on the

imaginary axis. Then,
∣∣∣β+1
β−1

∣∣∣ > 1. Hence if |β| ≥ 1, then
∣∣∣∣
(

β(β+1)
(β−1)

)2

β2s

∣∣∣∣ > 1. This

is a contradiction to the fact that β is a solution of
(

x(x + 1)
(x− 1)

)2

x2s = 1.

Hence |β| < 1 or β is on the imaginary axis. On the other hand, assume that p(x)
has a root β on the imaginary axis. Then β is a solution of

(
x(x + 1)
(x− 1)

)2

x2s = 1.

Since β is on the imaginary axis,
∣∣∣β+1
β−1

∣∣∣ is 1. Thus |β| is 1. Furthermore, we have
β = ±i. However, p(x) does not have ±i as solutions. Hence p(x) has no roots on
the imaginary axis. Therefore, the polynomials (3.4) and (3.5) satisfy the conditions
in Lemma .

By the polynomials (3.4) and (3.5), we obtain the equations
{

(x
s
2+1 − x−( s

2+1)) + (x
s
2 + x−

s
2 ) = 0 ( s

2 : even)
(x

s
2+1 + x−( s

2+1)) + (x
s
2 − x−

s
2 ) = 0 ( s

2 : odd).

Denote z = x−x−1. Then xj −x−j can be written as a polynomial in z in the case
when j is odd, and xj + x−j can be written as a polynomial in z in the case when
j is even. Hence by these equations, we obtain polynomials in z. We denote these
polynomials in z by Ψs(z). Any factoring of Ψs(z) will induce a factoring of the
polynomial (3.4) or (3.5). Hence Ψs(z) is irreducible by Lemma . Since α− α−1 is
a solution of Ψs(z), the result follows. 2

Next we prove Theorem in the case that s is odd. In this case, we cannot apply
Lemma directly, so we extend Lemma in the proof of Theorem .

Theorem 3.5. If s ∈ Z is odd, then the trace field of C(2, s) is Q(w), where w is
a root of the irreducible polynomial Ψs(z).

Proof. Since s is odd, by the equation (3.2) we obtain
(

x(x + 1)
(x− 1)

)2

x2s = −1.
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Hence α is a root of

x2s+4 + 2x2s+3 + x2s+2 + x2 − 2x + 1 = 0.

This polynomial has x2 + 1 as a factor. We set

p(x) =
x2s+4 + 2x2s+3 + x2s+2 + x2 − 2x + 1

x2 + 1
(3.6)

= x2s+2 + 2x2s+1 + · · · − 2x + 1.(3.7)

Every root of p(x) is a solution of
(

x(x + 1)
(x− 1)

)4

x4s = 1.

By Lemma , f(x) = (x + 1)4x4s+4− (x− 1)4 has no repeated roots. Thus, p(x) has
no repeated roots. Hence p(x) is complete. Thus, if β is a non-real root of p(x),
then −β−1,β and −β

−1
are also roots of p(x). If β′ is a real root of p(x), then β′−1

is also a root of p(x).
If β is in the first quadrant on the imaginary axis, then

∣∣∣β+1
β−1

∣∣∣ > 1. Hence if

|β| ≥ 1, then
∣∣∣∣
(

β(β+1)
(β−1)

)2

β2s

∣∣∣∣ > 1. This is a contradiction to the fact that β is a

solution of
(

x(x+1)
(x−1)

)2

x2s = −1. Hence if β is in the first quadrant, then |β| < 1 or
β is on the imaginary part. On the other hand, assume that β is on the imaginary
axis. Then β is a solution of

(
x(x + 1)
(x− 1)

)2

x2s = −1.

Since β is on the imaginary axis,
∣∣∣β+1
β−1

∣∣∣ is 1. Thus |β| is 1. Furthermore, we have
β = ±i. However, p(x) does not have ±i as solutions. Hence β is not on the
imaginary axis. Therefore, if β is a non-real root of p(x), then β + β − β−1 − β

−1

is contained in R and < 0. If β′ is a real root of p(x), then β − β−1 < 0.
We now prove that p(x) does not factor into two complete factors. Assume that

there is a complete factor g1(x) of p(x). If g1(x) has a form

g1(x) = xm + bm−1x
m−1 + · · ·+ b0,

then bm−1 = −∑
(βi + βi − β−1

i − βi
−1

) − ∑
(β′i − β′−1

i ) > 0 and < 2, since the
sum of all roots of p(x) is −2. Hence we obtain bm−1 = 1. Therefore, if there are
complete factors g1(x) and g2(x) of p(x), then g1(x) and g2(x) have the forms

g1(x) = xm + xm−1 + cm−2x
m−2 · · ·+ c0

g2(x) = xn + xn−1 + dn−2xn−2 · · ·+ d0.
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Since p(x) is factorized into

{
xs+1(x+1)+i(x−1)

x−i
xs+1(x+1)−i(x−1)

x+i ( s+1
4 ∈ Z)

xs+1(x+1)+i(x−1)
x+i

xs+1(x+1)−i(x−1)
x−i ( s+1

4 /∈ Z)
,

there is h(x) ∈ Z[i][x] such that p(x) is equal to h(x)h(x). Since Z[i] is an unique
factorization domain, Z[i][x] is also an unique factorization domain. Thus g1 is
factored as q1(x)q2(x) · · · qn(x) ∈ Z[i][x], where qk(x) is prime in Z[i][x] for each k.
Since g1(x) is a factor of p(x), qk(x) is a factor of h(x) or h(x) for each k. However,
p(x) has no repeated roots. Hence there exists

p1(x) = xl + al−1x
l−1 + · · ·+ a0 ∈ Z[i][x]

such that g1(x) is equal to p1(x)p1(x). Since g1(x) is complete, p1(β) = 0 implies
that p1(−β−1) = 0 or p1(−β

−1
) = 0. However, both Re(β − β−1) and Re(β − β

−1
)

are < 0. Hence the sum of the real parts of the roots of g1 is < 0 and > −1.
Therefore, we have 0 < Re(al−1) < 1. This is a contradiction to the fact that al−1

is in Z[i]. Hence p(x) does not factor into two complete factors.
Denote z = x− x−1. p(x) has a form

x2s+2 + 2x2s+1 − 2x2s−1 + 2x2s−3 − · · ·+ 2x3 − 2x + 1.

By dividing it by xs+1, we have

(xs+1 + x−(s+1)) + 2

s−1
2∑

j=0

(−1)j(xs−2j − x−(s−2j)).

Hence we obtain the polynomial Ψs(z) in z. Any factoring of Ψs(z) will induce a
factoring of p(x). Hence Ψs(z) is irreducible. Since α− α−1 is a solution of Ψs(z),
the result follows. 2

By Theorem and , we obtain Theorem .
To prove Theorem , we first prove the following theorem.

Theorem 3.6. Fix p ∈ N. For any n ∈ N there exists s0 such that if s > s0, then
the degree of kC(p, s) is > n.

Proof. Let α ∈ C be a solution of the equation
(

x(x+1)
(x−1)

)p

x2s = ±1 of x. If

α is in the first quadrant not on the imaginary axis, then
∣∣∣α+1
α−1

∣∣∣ > 1. Hence if

|α| ≥ 1, then
∣∣∣
(

α(α+1)
(α−1)

)p

α2s
∣∣∣ > 1. This is a contradiction to the fact that α satisfies(

α(α+1)
(α−1)

)p

α2s = ±1. Hence if α is in the first quadrant not on the imaginary axis,
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then |α| < 1. Hence we have

1 =
∣∣∣∣
α(α + 1)
(α− 1)

∣∣∣∣
p

|α2s|

≤
(

1 + |α|
1− |α|

)p

|α|p+2s.

Since the function

fs(x) =
(

1 + x

1− x

)p

xp+2s

on the interval (0, 1) is an increasing continuous function, there exists βs ∈ (0, 1)
satisfying fs(βs) = 1 and βs < |α|. Since βs < 1 and satisfies fs(βs) = 1, βs

converges to 1, when s goes to ∞. Hence there exists s0 ∈ N such that if s > s0,
then β−1

s − βs < 1
n . Since βs < |α|, ∣∣α−1

∣∣ − |α| < 1
n . Note that βs is independent

of the choice of α satisfying
(

α(α+1)
(α−1)

)p

α2s = ±1. Therefore, if α is a solution of

p(x) = xp(x + 1)px2s ± (x − 1)p in the first quadrant, then
∣∣α−1

∣∣ − |α| < 1
n for

s > s0.
Every root of p(x) is a solution of

(
x(x + 1)
(x− 1)

)2p

x4s = 1.

By Lemma , f(x) = (x + 1)2px2p+4s − (x− 1)2p has no repeated roots. Thus p(x)
has no repeated roots. Hence p(x) is complete.

Every root of p(x) is a solution of the equation
(

x(x+1)
(x−1)

)p

x2s = ±1 of x. Hence
the norm of every root of p(x) in the first quadrant is < 1 or the root is on the
imaginary axis. On the other hand, assume that a root α of p(x) is on the imaginary
axis. Then α is a solution of

(
x(x + 1)
(x− 1)

)p

x2s = ±1.

Since α is on the imaginary axis,
∣∣∣α+1
α−1

∣∣∣ is 1. Thus |α| is 1. Furthermore, we have
α = ±i.

For m ≤ n, if p(x) has a complete factor

p1(x) = x2m + a2m−1x
2m−1 + · · ·+ a0,

then we have

0 ≤ a2m−1 < −
∑

(αi + αi − α−1
i − α−1

i ) < m(β−1
s − βs) < 1.

Thus we obtain a2m−1 = 0. Hence every root of p1(x) is on the imaginary axis.
Since p(x) has no repeated roots, p1(x) must be x2 + 1. However the trace fields of
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C(p, s) have degree 2 if and only if (|p + s|, |s|) or (|s|, |p + s|) is in {(3, 0), (3, 1),
(3, 2), (3, 3), (4, 0), (4, 2), (4, 4), (6, 0), (6, 6)} by Proposition 7.1 in [4]. Since we
can assume that s0 > 12, the degree of kC(p, s) is > n. 2

We now prove Theorem 1.4.

Proof. First, we prove that the trace field of C(3, s) does not have degree 5 for any
s ∈ N. To do it, we will find s0 such that if s > s0, β−1

s − βs < 1
5 , where βs is as in

the proof of Theorem .
We choose a number less than 1

5 , for example we choose 20
19 − 19

20 . If

(3.8) fs(
19
20

) =
(

1 + 19
20

1− 19
20

)5 (
19
20

)5+2s

is less than 1 = fs(βs), then 19
20 < βs since fs(x) is an increasing function. Hence

we obtain

β−1
s − βs <

20
19
− 19

20
<

1
5
.

Therefore, if we choose s0 such that fs0(
19
20 ) < 1, then for s > s0 the trace field

of C(3, s) does not have degree 5, by the proof of Theorem . If s > 200, then
fs( 19

20 ) < 1. Hence if s > 200, then the trace field of C(3, s) does not have degree
5. Using Mathematica, we can check that the trace field of C(3, s) does not have
degree 5 for s < 200. Therefore, the trace field of C(3, s) does not have degree 5 for
any s ∈ N.

In a similar way, we can prove that the trace field of C(5, s) does not have degree
9 for any s ∈ N, and that of C(6, s) does not have degree 3, and that of C(12, s)
does not have degree 3. Hence the result follows. 2

Remark 3.7. If p is 1 or 2, then the degree of the trace field of C(p, s) runs over
all elements of N \ {1} as s runs over all elements of Z. However, in the case p is 4
or 8, whether this property holds or not is still unknown.

4. Appendix

The explicit form of Ψs(z) in Theorem is as follows.

z
s
2+1 + z

s
2 +

s
4∑

i=1

{
i∑

n=0

∑

i1+···+in=i

Ci1···in

}
z

s
2+1−2i

+

s
4∑

i=1

{
i∑

n=0

(−1)n
∑

i1+···+in=i

Di1···in

}
z

s
2−2i (

s

2
: even)
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z
s
2+1 + z

s
2 +

s+2
4∑

i=1

{
i∑

n=0

(−1)n
∑

i1+···+in=i

Ci1···in

}
z

s
2+1−2i

+

s−2
4∑

i=1

{∑
n=0

∑

i1+···+in=i

Di1···in

}
z

s
2−2i (

s

2
: odd)

zs+1 +

s+1
2∑

i=1

{
i∑

n=0

∑

i1+···+in=i

Ei1···in

}
zs+1−2i

+

s−1
2∑

i=1



2

s−1
2∑

j

i∑
n=0

∑

i1+···+in=i

Fi1···in



 zs−2i (s: odd).

where

Ci1···in = (−1)1+i1 · · · (−1)1+in

(
s
2 + 1
i1

)
· · ·

(
s
2 + 1− 2i1 − · · · − 2in−1

in

)
,

Di1···in =
(

s
2
i1

)
· · ·

(
s
2 − 2i1 − · · · − 2in−1

in

)
,

Ei1···in = (−1)n

(
s + 1

i1

)
· · ·

(
s + 1− 2i1 − · · · − 2in−1

in

)
,

and

Fi1···in = (−1)j(−1)1+i1 · · · (−1)1+in

(
s− 2j

i1

)
· · ·

(
s− 2j − 2i1 − · · · − 2in−1

in

)
.

These polynomials can be simplified by letting z = x− x−1 as follows:





(x
s
2+1 − x−( s

2+1)) + (x
s
2 + x−

s
2 ) ( s

2 : even)
(x

s
2+1 + x−( s

2+1)) + (x
s
2 − x−

s
2 ) ( s

2 : odd)

(xs+1 + x−(s+1)) + 2
∑ s−1

2
j=0 (−1)j(xs−2j − x−(s−2j)) (s: odd)
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